Mar*_*bak 5 python pandas pandas-groupby
我有一个按“键”分组的数据框。我需要比较每个组中的行,以确定是要保留组中的每一行还是只需要一组中的一行。
在保留一组所有行的条件下:如果有一行颜色为“红色”,面积为“12”,形状为“圆形”,另一行(同一组内)的颜色为“绿色”和“13”的区域和“正方形”的形状,然后我想保留该组中的所有行。否则,如果这种情况不存在,我想保留该组中具有最大 'num' 值的行。
df = pd.DataFrame({'KEY': ['100000009', '100000009', '100000009', '100000009', '100000009','100000034','100000034', '100000034'],
'Date1': [20120506, 20120506, 20120507,20120608,20120620,20120206,20120306,20120405],
'shape': ['circle', 'square', 'circle','circle','circle','circle','circle','circle'],
'num': [3,4,5,6,7,8,9,10],
'area': [12, 13, 12,12,12,12,12,12],
'color': ['red', 'green', 'red','red','red','red','red','red']})
Date1 KEY area color num shape
0 2012-05-06 100000009 12 red 3 circle
1 2012-05-06 100000009 13 green 4 square
2 2012-05-07 100000009 12 red 5 circle
3 2012-06-08 100000009 12 red 6 circle
4 2012-06-20 100000009 12 red 7 circle
5 2012-02-06 100000034 12 red 8 circle
6 2012-03-06 100000034 12 red 9 circle
7 2012-04-05 100000034 12 red 10 circle
Run Code Online (Sandbox Code Playgroud)
预期结果:
Date1 KEY area color num shape
0 2012-05-06 100000009 12 red 3 circle
1 2012-05-06 100000009 13 green 4 square
2 2012-05-07 100000009 12 red 5 circle
3 2012-06-08 100000009 12 red 6 circle
4 2012-06-20 100000009 12 red 7 circle
7 2012-04-05 100000034 12 red 10 circle
Run Code Online (Sandbox Code Playgroud)
我是 python 新手,groupby 给我扔了一个曲线球。
maxnum = df.groupby('KEY')['num'].transform(max)
df = df.loc[df.num == maxnum]
cond1 = (df[df['area'] == 12]) & (df[df['color'] == 'red']) & (df[df['shape'] == 'circle'])
cond2 = (df[df['area'] == 13]) & (df[df['color'] == 'green']) & (df[df['shape'] == 'square'])
Run Code Online (Sandbox Code Playgroud)
定义一个名为的自定义函数function:
def function(x):
i = x.query(
'area == 12 and color == "red" and shape == "circle"'
)
j = x.query(
'area == 13 and color == "green" and shape == "square"'
)
return x if not (i.empty or j.empty) else x[x.num == x.num.max()].head(1)
Run Code Online (Sandbox Code Playgroud)
此函数在指定条件下测试每个组并根据需要返回行。特别是,它使用 查询条件并测试是否为空df.empty。
将其传递给groupby+ apply:
df.groupby('KEY', group_keys=False).apply(function)
Date1 KEY area color num shape
0 20120506 100000009 12 red 3 circle
1 20120506 100000009 13 green 4 square
2 20120507 100000009 12 red 5 circle
3 20120608 100000009 12 red 6 circle
4 20120620 100000009 12 red 7 circle
7 20120405 100000034 12 red 10 circle
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3199 次 |
| 最近记录: |