J. *_*Doe 2 python matplotlib pandas seaborn
每个方面都有自己的含义。如何mymean为每个不同的 Facet 绘制相应的值?mymean是 3 个平均值的列表。
from random import randint
import pandas as pd
names = ["Jack", "Ernest", "Wilde"]
a = pd.DataFrame({"Value": [randint(0, 100) for i in range(len(names)*5)],
"Year": [y for i in range(len(names)) for y in range(2014,2019)],
"Name": [name for name in names for i in range(5)]})
mymean = a.groupby(["Name"])["Value"].mean()
sns.set(style="white", context="talk")
grid = sns.FacetGrid(a, col="Name", hue="Name", col_wrap=3, size=3, sharey=False)
grid.map(plt.axhline, y=60, ls=":", c=".5")
grid.map(plt.plot, "Year", "Value", marker="o", ms=5)
grid.fig.tight_layout(w_pad=1)
Run Code Online (Sandbox Code Playgroud)
您可以创建一个自定义映射函数,该函数将从每个方面获取数据、计算平均值并绘制结果值
def plot_mean(data,**kwargs):
m = data.mean()
plt.axhline(m, **kwargs)
names = ["Jack", "Ernest", "Wilde"]
a = pd.DataFrame({"Value": [np.random.randint(0, 100) for i in range(len(names)*5)],
"Year": [y for i in range(len(names)) for y in range(2014,2019)],
"Name": [name for name in names for i in range(5)]})
mymean = a.groupby(["Name"])["Value"].mean()
sns.set(style="white", context="talk")
grid = sns.FacetGrid(a, col="Name", hue="Name", col_wrap=3, size=3, sharey=False)
# To get the data passed to our custom function,
# we need to add "Value" as a second argument to FacetGrid.map()
grid.map(plot_mean, 'Value', ls=":", c=".5")
grid.map(plt.plot, "Year", "Value", marker="o", ms=5)
grid.fig.tight_layout(w_pad=1)
Run Code Online (Sandbox Code Playgroud)