在二维二进制矩阵中找到岛屿的数量

Inf*_*ity 4 python algorithm graph matrix

我正在尝试计算二维二进制矩阵中岛屿的数量(一组连接的 1 形成一个岛屿)。

例子:

[
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]
]
Run Code Online (Sandbox Code Playgroud)

在上面的矩阵中有5个岛,它们是:

First: (0,0), (0,1), (1,1), (2,0)
Second: (1,4), (2,3), (2,4)
Third: (4,0)
Fourth: (4,2)
Fifth: (4,4)
Run Code Online (Sandbox Code Playgroud)

为了计算 2D 矩阵中岛屿的数量,我假设矩阵是一个 Graph,然后我使用 DFS 类型的算法来计算岛屿。

我正在跟踪 DFS(递归函数)调用的数量,因为图中会有很多组件。

下面是我为此目的编写的代码:

# count the 1's in the island
def count_houses(mat, visited, i, j):
    # base case
    if i < 0 or i >= len(mat) or j < 0 or j >= len(mat[0]) or\
            visited[i][j] is True or mat[i][j] == 0:
        return 0
    # marking visited at i, j
    visited[i][j] = True
    # cnt is initialized to 1 coz 1 is found
    cnt = 1
    # now go in all possible directions (i.e. form 8 branches)
    # starting from the left upper corner of i,j and going down to right bottom
    # corner of i,j
    for r in xrange(i-1, i+2, 1):
        for c in xrange(j-1, j+2, 1):
            # print 'r:', r
            # print 'c:', c
            # don't call for i, j
            if r != i and c != j:
                cnt += count_houses(mat, visited, r, c)
    return cnt


def island_count(mat):
    houses = list()
    clusters = 0
    row = len(mat)
    col = len(mat[0])
    # initialize the visited matrix
    visited = [[False for i in xrange(col)] for j in xrange(row)]
    # run over matrix, search for 1 and then do dfs when found 1
    for i in xrange(row):
        for j in xrange(col):
            # see if value at i, j is 1 in mat and val at i, j is False in
            # visited
            if mat[i][j] == 1 and visited[i][j] is False:
                clusters += 1
                h = count_houses(mat, visited, i, j)
                houses.append(h)
    print 'clusters:', clusters
    return houses


if __name__ == '__main__':
    mat = [
        [1, 1, 0, 0, 0],
        [0, 1, 0, 0, 1],
        [1, 0, 0, 1, 1],
        [0, 0, 0, 0, 0],
        [1, 0, 1, 0, 1]
    ]
    houses = island_count(mat)
    print houses
    # print 'maximum houses:', max(houses)
Run Code Online (Sandbox Code Playgroud)

我在参数中传递的矩阵的输出错误。我明白了,7但有5集群。

我尝试调试代码以查找任何逻辑错误。但我找不到问题出在哪里。

f5r*_*e5d 5

大锤法,供参考

必须添加structure参数np.ones((3,3))以添加对角连接

import numpy as np
from scipy import ndimage

ary = np.array([
[1, 1, 0, 0, 0],
[0, 1, 0, 0, 1],
[1, 0, 0, 1, 1],
[0, 0, 0, 0, 0],
[1, 0, 1, 0, 1]
])

labeled_array, num_features = ndimage.label(ary, np.ones((3,3)))

labeled_array, num_features
Out[183]: 
(array([[1, 1, 0, 0, 0],
        [0, 1, 0, 0, 2],
        [1, 0, 0, 2, 2],
        [0, 0, 0, 0, 0],
        [3, 0, 4, 0, 5]]), 5)
Run Code Online (Sandbox Code Playgroud)

  • 可以作为测试的参考 (3认同)
  • 该解决方案如何帮助解决上述问题? (2认同)

Oli*_*çon 3

除了第 21 行之外,你的算法几乎是正确的:

if r != i and c != j:
    cnt += count_houses(mat, visited, r, c)
Run Code Online (Sandbox Code Playgroud)

相反,or如果至少有一个坐标与您的中心不同,您想继续计数。

if r != i or c != j:
    cnt += count_houses(mat, visited, r, c)
Run Code Online (Sandbox Code Playgroud)

另一种更直观的编写方式如下

if (r, c) != (i, j):
    cnt += count_houses(mat, visited, r, c)
Run Code Online (Sandbox Code Playgroud)