我有一个由另一个 dag 触发的 dag。我已经通过DagRunOrder().payload字典以与官方示例相同的方式将一些配置变量传递给了这个 dag 。
现在在这个 dag 中,我有另一个 dagTriggerDagRunOperator来启动第二个 dag,并希望通过这些相同的配置变量。
我已经成功地访问了有效载荷变量,PythonOperator如下所示:
def run_this_func(ds, **kwargs):
print("Remotely received value of {} for message and {} for day".format(
kwargs["dag_run"].conf["message"], kwargs["dag_run"].conf["day"])
)
run_this = PythonOperator(
task_id='run_this',
provide_context=True,
python_callable=run_this_func,
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
但是相同的模式在以下情况下不起作用TriggerDagRunOperator:
def trigger(context, dag_run_obj, **kwargs):
dag_run_obj.payload = {
"message": kwargs["dag_run"].conf["message"],
"day": kwargs["dag_run"].conf["day"]
}
return dag_run_obj
trigger_step = TriggerDagRunOperator(
task_id="trigger_modelling",
trigger_dag_id="Dummy_Modelling",
provide_context=True,
python_callable=trigger,
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
它会产生关于使用的警告provide_context:
INFO - Subtask: /usr/local/lib/python2.7/dist-packages/airflow/models.py:1927: PendingDeprecationWarning: Invalid arguments were passed to TriggerDagRunOperator. Support for passing such arguments will be dropped in Airflow 2.0. Invalid arguments were:
INFO - Subtask: *args: ()
INFO - Subtask: **kwargs: {'provide_context': True}
INFO - Subtask: category=PendingDeprecationWarning
Run Code Online (Sandbox Code Playgroud)
这个错误表明我没有通过 conf :
INFO - Subtask: Traceback (most recent call last):
INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/models.py", line 1374, in run
INFO - Subtask: result = task_copy.execute(context=context)
INFO - Subtask: File "/usr/local/lib/python2.7/dist-packages/airflow/operators/dagrun_operator.py", line 64, in execute
INFO - Subtask: dro = self.python_callable(context, dro)
INFO - Subtask: File "/home/user/airflow/dags/dummy_responses.py", line 28, in trigger
INFO - Subtask: "message": kwargs["dag_run"].conf["message"],
INFO - Subtask: KeyError: 'dag_run'
Run Code Online (Sandbox Code Playgroud)
我尝试过的第二种模式也没有奏效,是使用如下params参数:
def trigger(context, dag_run_obj):
dag_run_obj.payload = {
"message": context['params']['message'],
"day": context['params']['day']
}
return dag_run_obj
trigger_step = TriggerDagRunOperator(
task_id="trigger_modelling",
trigger_dag_id="Dummy_Modelling",
python_callable=trigger,
params={
"message": "{{ dag_run.conf['message'] }}",
"day": "{{ dag_run.conf['day'] }}"
},
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
此模式不会产生错误,而是将参数作为字符串传递到下一个 dag,即它不计算表达式。
如何访问TriggerDagRunOperator第二个 dag 中的配置变量?
taa*_*ari 14
在 中Airflow2.0.x,相当于 的@efbbrown答案是:
from airflow.operators.trigger_dagrun import TriggerDagRunOperator
trigger_step = TriggerDagRunOperator(
task_id="trigger_modelling",
trigger_dag_id="Dummy_Modelling",
conf={"message": "{{ dag_run.conf['message'] }}", "day":"{{
dag_run.conf['day'] }}"},
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
GitHub上的此处描述了拉取请求。
这是有关该主题的YouTube 视频,其中显示了正确的导入。
解决了:
的dag_run对象被存储在上下文等的配置变量可以在被访问python_callable的TriggerDagRunOperator与该图案:
def trigger(context, dag_run_obj):
dag_run_obj.payload = {
"message": context["dag_run"].conf["message"],
"day": context["dag_run"].conf["day"]
}
return dag_run_obj
trigger_step = TriggerDagRunOperator(
task_id="trigger_modelling",
trigger_dag_id="Dummy_Modelling",
python_callable=trigger,
dag=dag
)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11572 次 |
| 最近记录: |