alv*_*vas 4 machine-translation recurrent-neural-network attention-model sequence-to-sequence pytorch
从PyTorch Seq2Seq教程,http: //pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html#attention-decoder
我们看到注意机制严重依赖于MAX_LENGTH
参数来确定输出维数attn -> attn_softmax -> attn_weights
,即
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
Run Code Online (Sandbox Code Playgroud)
进一步来说
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
Run Code Online (Sandbox Code Playgroud)
我理解MAX_LENGTH
变量是减少no的机制.需要训练的参数AttentionDecoderRNN
.
如果我们没有MAX_LENGTH
预先决定.我们应该用什么值初始化attn
图层?
会是output_size
吗?如果是这样,那么就会学习目标语言中完整词汇的注意力.这不是Bahdanau(2015)关注论文的真实意图吗?
归档时间: |
|
查看次数: |
170 次 |
最近记录: |