Gra*_*est 11 machine-learning feature-extraction neural-network tensorflow
从TensorFlow文档中可以清楚地看到如何使用tf.feature_column.categorical_column_with_vocabulary_list
创建一个特征列,该特征列将一些字符串作为输入并输出一个热矢量.例如
vocabulary_feature_column =
tf.feature_column.categorical_column_with_vocabulary_list(
key="vocab_feature",
vocabulary_list=["kitchenware", "electronics", "sports"])
Run Code Online (Sandbox Code Playgroud)
让我们说"kitchenware"
映射到[1,0,0]
并"electronics"
映射到[0,1,0]
.我的问题与将字符串列表作为特征有关.例如,如果特征值是,["kitchenware","electronics"]
那么期望的输出将是[1,1,0]
.输入列表长度不固定,但输出维度为.
用例是一个直的词袋类型模型(显然有一个更大的词汇表!).
实现这个的正确方法是什么?
jam*_*rta 13
以下是如何将数据提供给指标列的示例:
features = {'letter': [['A','A'], ['C','D'], ['E','F'], ['G','A'], ['X','R']]}
letter_feature = tf.feature_column.categorical_column_with_vocabulary_list(
"letter", ["A", "B", "C"], dtype=tf.string)
indicator = tf.feature_column.indicator_column(letter_feature)
tensor = tf.feature_column.input_layer(features, [indicator])
with tf.Session() as session:
session.run(tf.global_variables_initializer())
session.run(tf.tables_initializer())
print(session.run([tensor]))
Run Code Online (Sandbox Code Playgroud)
哪个输出:
[array([[2., 0., 0.],
[0., 0., 1.],
[0., 0., 0.],
[1., 0., 0.],
[0., 0., 0.]], dtype=float32)]
Run Code Online (Sandbox Code Playgroud)
小智 3
您应该使用 tf.feature_column.indicator_column 请参阅https://www.tensorflow.org/versions/master/api_docs/python/tf/feature_column/indicator_column
归档时间: |
|
查看次数: |
3672 次 |
最近记录: |