Lis*_*a O 5 statistics r machine-learning cross-validation xgboost
我与Airbnb的数据时,可以在这里对Kaggle,并预测国家的用户将预定他们的第一次旅行与XGBoost模型和R.近600个功能,通过50轮的5倍交叉验证的运行算法,我得到每次100%准确.在将模型拟合到训练数据并预测保持的测试集之后,我也获得了100%的准确度.这些结果不可能是真实的.我的代码肯定有问题,但到目前为止我还没弄清楚.我在下面列出了我的一部分代码.它基于这篇文章.继文章(使用文章的数据+复制代码),我收到类似的结果.无论如何将其应用于Airbnb的数据,我始终可以获得100%的准确率.我不知道发生了什么事.我是否错误地使用了xgboost包?感谢您的帮助和时间.
# set up the data
# train is the data frame of features with the target variable to predict
full_variables <- data.matrix(train[,-1]) # country_destination removed
full_label <- as.numeric(train$country_destination) - 1
# training data
train_index <- caret::createDataPartition(y = train$country_destination, p = 0.70, list = FALSE)
train_data <- full_variables[train_index, ]
train_label <- full_label[train_index[,1]]
train_matrix <- xgb.DMatrix(data = train_data, label = train_label)
# test data
test_data <- full_variables[-train_index, ]
test_label <- full_label[-train_index[,1]]
test_matrix <- xgb.DMatrix(data = test_data, label = test_label)
# 5-fold CV
params <- list("objective" = "multi:softprob",
"num_class" = classes,
eta = 0.3,
max_depth = 6)
cv_model <- xgb.cv(params = params,
data = train_matrix,
nrounds = 50,
nfold = 5,
early_stop_round = 1,
verbose = F,
maximize = T,
prediction = T)
# out of fold predictions
out_of_fold_p <- data.frame(cv_model$pred) %>% mutate(max_prob = max.col(., ties.method = "last"),label = train_label + 1)
head(out_of_fold_p)
# confusion matrix
confusionMatrix(factor(out_of_fold_p$label),
factor(out_of_fold_p$max_prob),
mode = "everything")
Run Code Online (Sandbox Code Playgroud)
通过运行此代码,可以在此处找到我用于此目的的数据示例:
library(RCurl)
x < getURL("https://raw.githubusercontent.com/loshita/Senior_project/master/train.csv")
y <- read.csv(text = x)
Run Code Online (Sandbox Code Playgroud)
如果您正在使用train_users_2.csv.zip可用的kaggle,那么问题是您没有country_destination从列车数据集中删除它,因为它处于适当位置16而不是1.
which(colnames(train) == "country_destination")
#output
16
Run Code Online (Sandbox Code Playgroud)
1是id这是每一个独特的观察,也应该被删除.
length(unique(train[,1)) == nrow(train)
#output
TRUE
Run Code Online (Sandbox Code Playgroud)
当我使用以下修改运行您的代码时:
full_variables <- data.matrix(train[,-c(1, 16)])
library(xgboost)
params <- list("objective" = "multi:softprob",
"num_class" = length(unique(train_label)),
eta = 0.3,
max_depth = 6)
cv_model <- xgb.cv(params = params,
data = train_matrix,
nrounds = 50,
nfold = 5,
early_stop_round = 1,
verbose = T,
maximize = T,
prediction = T)
Run Code Online (Sandbox Code Playgroud)
在上述设置的交叉验证0.12期间,我获得了测试错误.
out_of_fold_p <- data.frame(cv_model$pred) %>% mutate(max_prob = max.col(., ties.method = "last"),label = train_label + 1)
head(out_of_fold_p[,13:14], 20)
#output
max_prob label
1 8 8
2 12 12
3 12 10
4 12 12
5 12 12
6 12 12
7 12 12
8 12 12
9 8 8
10 12 5
11 12 2
12 2 12
13 12 12
14 12 12
15 12 12
16 8 8
17 8 8
18 12 5
19 8 8
20 12 12
Run Code Online (Sandbox Code Playgroud)
总而言之,你没有y从中删除x.
编辑:下载真正的火车组和玩耍后,我可以说精度是5倍CV的100%.不仅仅是这只通过22个功能(可能更少)实现.
model <- xgboost(params = params,
data = train_matrix,
nrounds = 50,
verbose = T,
maximize = T)
Run Code Online (Sandbox Code Playgroud)
该模型在测试集上也获得100%的准确度:
pred <- predict(model, test_matrix)
pred <- matrix(pred, ncol=length(unique(train_label)), byrow = TRUE)
out_of_fold_p <- data.frame(pred) %>% mutate(max_prob = max.col(., ties.method = "last"),label = test_label + 1)
sum(out_of_fold_p$max_prob != out_of_fold_p$label) #0 errors
Run Code Online (Sandbox Code Playgroud)
现在让我们检查哪些功能具有歧视性:
xgb.plot.importance(importance_matrix = xgb.importance(colnames(train_matrix), model))
Run Code Online (Sandbox Code Playgroud)
现在,如果你只使用这些功能运行xgb.cv:
train_matrix <- xgb.DMatrix(data = train_data[,which(colnames(train_data) %in% xgboost::xgb.importance(colnames(train_matrix), model)$Feature)], label = train_label)
set.seed(1)
cv_model <- xgb.cv(params = params,
data = train_matrix,
nrounds = 50,
nfold = 5,
early_stop_round = 1,
verbose = T,
maximize = T,
prediction = T)
Run Code Online (Sandbox Code Playgroud)
您还可以在测试折叠上获得100%的准确度
原因部分在于班级的非常大的失衡:
table(train_label)
train_label
0 1 2 3 4 5 6 7 8 9 10 11
3 10 12 13 36 16 19 856 7 73 3 451
Run Code Online (Sandbox Code Playgroud)
以及通过1个虚拟变量很容易区分次要类的事实:
gg <- data.frame(train_data[,which(colnames(train_data) %in% xgb.importance(colnames(train_matrix), model)$Feature)], label = as.factor(train_label))
gg %>%
as.tibble() %>%
select(1:9, 11, 12, 15:21, 23) %>%
gather(key, value, 1:18) %>%
ggplot()+
geom_bar(aes(x = label))+
facet_grid(key ~ value) +
theme(strip.text.y = element_text(angle = 90))
Run Code Online (Sandbox Code Playgroud)
基于22个最重要特征中0/1的分布,它看起来对任何树模型都能够达到相当好的准确性,如果不是100%的准确性.
人们可能会认为0级和10级对于5倍CV是有问题的,因为所有受试者都有可能落入一次,因此模型至少在那种情况下不会知道它们.如果通过随机抽样设计CV,那将是可能的.xgb.cv不会发生这种情况:
lapply(cv_model$folds, function(x){
table(train_label[x])})
Run Code Online (Sandbox Code Playgroud)