use*_*Geo 50 python dataframe pandas
我有两个数据帧df1和df2,其中df2是df1的子集.如何获得两个数据帧之间差异的新数据帧(df3)?
换句话说,一个数据框中df1中的所有行/列都不在df2中?
WeN*_*Ben 71
通过使用 drop_duplicates
pd.concat([df1,df2]).drop_duplicates(keep=False)
Run Code Online (Sandbox Code Playgroud)
Update :
Above method only working for those dataframes they do not have duplicate itself, For example
df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})
Run Code Online (Sandbox Code Playgroud)
它输出如下,这是错误的
输出错误:
pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]:
A B
1 2 3
Run Code Online (Sandbox Code Playgroud)
正确的输出
Out[656]:
A B
1 2 3
2 3 4
3 3 4
Run Code Online (Sandbox Code Playgroud)
怎么实现呢?
方法1:使用isin与tuple
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]:
A B
1 2 3
2 3 4
3 3 4
Run Code Online (Sandbox Code Playgroud)
方法2:merge用indicator
df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]:
A B _merge
1 2 3 left_only
2 3 4 left_only
3 3 4 left_only
Run Code Online (Sandbox Code Playgroud)
emm*_*phd 16
Pandas 现在提供了一个新的 API来进行数据帧比较:pandas.DataFrame.compare
df.compare(df2)
col1 col3
self other self other
0 a c NaN NaN
2 NaN NaN 3.0 4.0
Run Code Online (Sandbox Code Playgroud)
jpp*_*jpp 13
对于行,请尝试以下操作,并cols设置为要比较的列的列表:
m = df1.merge(df2, on=cols, how='outer', suffixes=['', '_'], indicator=True)
Run Code Online (Sandbox Code Playgroud)
对于列,请尝试以下操作:
set(df1.columns).symmetric_difference(df2.columns)
Run Code Online (Sandbox Code Playgroud)
toe*_*r42 12
接受的答案方法 1 不适用于内部包含 NaN 的数据帧,因为pd.np.nan != pd.np.nan. 我不确定这是否是最好的方法,但可以通过以下方式避免
df1[~df1.astype(str).apply(tuple, 1).isin(df2.astype(str).apply(tuple, 1))]
Run Code Online (Sandbox Code Playgroud)
它更慢,因为它需要将数据转换为字符串,但多亏了这种转换pd.np.nan == pd.np.nan。
让我们来看看代码。首先,我们将值转换为字符串,并将tuple函数应用于每一行。
df1.astype(str).apply(tuple, 1)
df2.astype(str).apply(tuple, 1)
Run Code Online (Sandbox Code Playgroud)
多亏了这一点,我们得到了pd.Series带有元组列表的对象。每个元组包含来自df1/ 的整行df2。然后我们应用isin方法df1来检查每个元组是否“在” df2。结果是pd.Series布尔值。如果元组 fromdf1在 中,则为真df2。最后,我们用~符号否定结果,并在 上应用过滤器df1。长话短说,我们只得到那些df1不在df2.
为了使其更具可读性,我们可以将其写为:
df1[~df1.astype(str).apply(tuple, 1).isin(df2.astype(str).apply(tuple, 1))]
Run Code Online (Sandbox Code Playgroud)
也许是更简单的一行,具有相同或不同的列名称。即使 df2['Name2'] 包含重复值也能工作。
newDf = df1.set_index('Name1')
.drop(df2['Name2'], errors='ignore')
.reset_index(drop=False)
Run Code Online (Sandbox Code Playgroud)
pandas 中有一种新方法DataFrame.compare可以比较 2 个不同的数据帧并返回数据记录每列中更改的值。
第一个数据框
Id Customer Status Date
1 ABC Good Mar 2023
2 BAC Good Feb 2024
3 CBA Bad Apr 2022
Run Code Online (Sandbox Code Playgroud)
第二个数据框
Id Customer Status Date
1 ABC Bad Mar 2023
2 BAC Good Feb 2024
5 CBA Good Apr 2024
Run Code Online (Sandbox Code Playgroud)
比较数据框
print("Dataframe difference -- \n")
print(df1.compare(df2))
print("Dataframe difference keeping equal values -- \n")
print(df1.compare(df2, keep_equal=True))
print("Dataframe difference keeping same shape -- \n")
print(df1.compare(df2, keep_shape=True))
print("Dataframe difference keeping same shape and equal values -- \n")
print(df1.compare(df2, keep_shape=True, keep_equal=True))
Run Code Online (Sandbox Code Playgroud)
结果
Dataframe difference --
Id Status Date
self other self other self other
0 NaN NaN Good Bad NaN NaN
2 3.0 5.0 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping equal values --
Id Status Date
self other self other self other
0 1 1 Good Bad Mar 2023 Mar 2023
2 3 5 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape --
Id Customer Status Date
self other self other self other self other
0 NaN NaN NaN NaN Good Bad NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 3.0 5.0 NaN NaN Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape and equal values --
Id Customer Status Date
self other self other self other self other
0 1 1 ABC ABC Good Bad Mar 2023 Mar 2023
1 2 2 BAC BAC Good Good Feb 2024 Feb 2024
2 3 5 CBA CBA Bad Good Apr 2022 Apr 2024
Run Code Online (Sandbox Code Playgroud)
edit2,我想出了一个不需要设置索引的新解决方案
newdf=pd.concat([df1,df2]).drop_duplicates(keep=False)
Run Code Online (Sandbox Code Playgroud)
好的,我发现最高投票的答案已经包含了我所想的。是的,我们只能在每两个 dfs 中没有重复的条件下使用此代码。
我有一个棘手的方法。首先,我们将“名称”设置为问题给出的两个数据帧的索引。由于我们在两个 dfs 中有相同的“名称”,我们可以从“较大”的 df 中删除“较小”的 df 索引。这是代码。
df1.set_index('Name',inplace=True)
df2.set_index('Name',inplace=True)
newdf=df1.drop(df2.index)
Run Code Online (Sandbox Code Playgroud)
import pandas as pd
# given
df1 = pd.DataFrame({'Name':['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa',],
'Age':[23,45,12,34,27,44,28,39,40]})
df2 = pd.DataFrame({'Name':['John','Smith','Wale','Tom','Menda','Yuswa',],
'Age':[23,12,34,44,28,40]})
# find elements in df1 that are not in df2
df_1notin2 = df1[~(df1['Name'].isin(df2['Name']) & df1['Age'].isin(df2['Age']))].reset_index(drop=True)
# output:
print('df1\n', df1)
print('df2\n', df2)
print('df_1notin2\n', df_1notin2)
# df1
# Age Name
# 0 23 John
# 1 45 Mike
# 2 12 Smith
# 3 34 Wale
# 4 27 Marry
# 5 44 Tom
# 6 28 Menda
# 7 39 Bolt
# 8 40 Yuswa
# df2
# Age Name
# 0 23 John
# 1 12 Smith
# 2 34 Wale
# 3 44 Tom
# 4 28 Menda
# 5 40 Yuswa
# df_1notin2
# Age Name
# 0 45 Mike
# 1 27 Marry
# 2 39 Bolt
Run Code Online (Sandbox Code Playgroud)
除了接受的答案之外,我还想提出一种更广泛的解决方案,可以找到两个数据帧与任何/的2D 集合差异(它们对于两个数据帧可能不一致)。该方法还允许为数据帧比较设置元素的容差(它使用)indexcolumnsfloatnp.isclose
import numpy as np
import pandas as pd
def get_dataframe_setdiff2d(df_new: pd.DataFrame,
df_old: pd.DataFrame,
rtol=1e-03, atol=1e-05) -> pd.DataFrame:
"""Returns set difference of two pandas DataFrames"""
union_index = np.union1d(df_new.index, df_old.index)
union_columns = np.union1d(df_new.columns, df_old.columns)
new = df_new.reindex(index=union_index, columns=union_columns)
old = df_old.reindex(index=union_index, columns=union_columns)
mask_diff = ~np.isclose(new, old, rtol, atol)
df_bool = pd.DataFrame(mask_diff, union_index, union_columns)
df_diff = pd.concat([new[df_bool].stack(),
old[df_bool].stack()], axis=1)
df_diff.columns = ["New", "Old"]
return df_diff
Run Code Online (Sandbox Code Playgroud)
例子:
In [1]
df1 = pd.DataFrame({'A':[2,1,2],'C':[2,1,2]})
df2 = pd.DataFrame({'A':[1,1],'B':[1,1]})
print("df1:\n", df1, "\n")
print("df2:\n", df2, "\n")
diff = get_dataframe_setdiff2d(df1, df2)
print("diff:\n", diff, "\n")
Run Code Online (Sandbox Code Playgroud)
Out [1]
df1:
A C
0 2 2
1 1 1
2 2 2
df2:
A B
0 1 1
1 1 1
diff:
New Old
0 A 2.0 1.0
B NaN 1.0
C 2.0 NaN
1 B NaN 1.0
C 1.0 NaN
2 A 2.0 NaN
C 2.0 NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
55530 次 |
| 最近记录: |