如何将每一行 JSON 解析为 Spark 2 DataFrame 的列?

Mar*_*kus 1 json scala apache-spark apache-spark-sql

在我的 Spark (2.2) DataFrame 中,每一行都是 JSON:

df.head()
//output
//[{"key":"111","event_name":"page-visited","timestamp":1517814315}]

df.show()
//output
//+--------------+
//|         value|
//+--------------+
//|{"key":"111...|
//|{"key":"222...|
Run Code Online (Sandbox Code Playgroud)

我想将每个 JSON 行传递给列以获得这个result

key   event_name     timestamp
111   page-visited   1517814315
...
Run Code Online (Sandbox Code Playgroud)

我试过这种方法,但它没有给我预期的结果:

import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.types._

val schema = StructType(Seq(
     StructField("key", StringType, true), StructField("event_name", StringType, true), StructField("timestamp", IntegerType, true)
))

val result = df.withColumn("value", from_json($"value", schema))
Run Code Online (Sandbox Code Playgroud)

和:

result.printSchema()
root
 |-- value: struct (nullable = true)
 |    |-- key: string (nullable = true)
 |    |-- event_name: string (nullable = true)
 |    |-- timestamp: integer (nullable = true)
Run Code Online (Sandbox Code Playgroud)

虽然它应该是:

result.printSchema()
root
 |-- key: string (nullable = true)
 |-- event_name: string (nullable = true)
 |-- timestamp: integer (nullable = true)
Run Code Online (Sandbox Code Playgroud)

Ram*_*jan 6

您可以select($"value.*")在最后使用struct将列的元素选择为单独的列

val result = df.withColumn("value", from_json($"value", schema)).select($"value.*")
Run Code Online (Sandbox Code Playgroud)