如何在Apache SparkSQL`Project`操作符中更改属性顺序?

Joã*_*aná 12 scala apache-spark apache-spark-sql

这是Catalyst特有的问题

在应用我的规则之前,请参阅下面的queryExecution.optimizedPlan.

01 Project [x#9, p#10, q#11, if (isnull(q#11)) null else UDF(q#11) AS udfB_10#28, if (isnull(p#10)) null else UDF(p#10) AS udfA_99#93]
02 +- InMemoryRelation [x#9, p#10, q#11], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas)
03    :  +- *SerializeFromObject [assertnotnull(input[0, eic.R0, true], top level non-flat input object).x AS x#9, unwrapoption(IntegerType, assertnotnull(input[0, eic.R0, true], top level non-flat input object).p) AS p#10, unwrapoption(IntegerType, assertnotnull(input[0, eic.R0, true], top level non-flat input object).q) AS q#11]
04    :     +- *MapElements <function1>, obj#8: eic.R0
05    :        +- *DeserializeToObject newInstance(class java.lang.Long), obj#7: java.lang.Long
05    :           +- *Range (0, 3, step=1, splits=Some(2))
Run Code Online (Sandbox Code Playgroud)

在第01行,我需要以这种方式交换udfA和udfB的位置:

01 Project [x#9, p#10, q#11, if (isnull(p#10)) null else UDF(p#10) AS udfA_99#93, if (isnull(q#11)) null else UDF(q#11) AS udfB_10#28]
Run Code Online (Sandbox Code Playgroud)

当我尝试通过Catalyst优化更改SparkSQL中Projection操作中属性的顺序时,查询结果被修改为无效值.也许我不是在做所有事情都需要.我只是在fields参数中更改NamedExpression对象的顺序:

object ReorderColumnsOnProjectOptimizationRule extends Rule[LogicalPlan] {

  def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {

    case Project(fields: Seq[NamedExpression], child) => 
      if (checkCondition(fields)) Project(newFieldsObject(fields), child) else Project(fields, child)

    case _ => plan

  }

  private def newFieldsObject(fields: Seq[NamedExpression]): Seq[NamedExpression] = {
    // compare UDFs computation cost and return the new NamedExpression list
    . . .
  }

  private def checkCondition(fields: Seq[NamedExpression]): Boolean = {
    // compare UDFs computation cost and return Boolean for decision off change order on field list.
    . . . 
  }
  . . .
}
Run Code Online (Sandbox Code Playgroud)

注意:我在extraOptimizationsSparkSQL对象上添加我的规则:

spark.experimental.extraOptimizations = Seq(ReorderColumnsOnProjectOptimizationRule)
Run Code Online (Sandbox Code Playgroud)

任何建议都会有很大帮助.

编辑1

顺便说一句,我在Databricks上创建了一个笔记本用于测试目的. 有关详细信息,请参阅此链接

在第60行注释时,将调用优化并发生错误.

. . .
58     // Do UDF with less cost before, so I need change the fields order
59     myPriorityList.size == 2 && myPriorityList(0) > myPriorityList(1)
60     false
61   }
Run Code Online (Sandbox Code Playgroud)

我错过了什么 ?

编辑2

考虑以下来自编译器优化的代码,这几乎是类似的:

if ( really_slow_test(with,plenty,of,parameters)
     && slower_test(with,some,parameters)
     && fast_test // with no parameters
   )
 {
  ...then code...
 }
Run Code Online (Sandbox Code Playgroud)

此代码首先评估昂贵的函数,然后在成功时继续评估表达式的其余部分.但即使第一次测试失败并且评估是快捷的,也会有显着的性能损失,因为总是会评估fat really_slow_test(...).在保持程序正确性的同时,可以重新排列表达式如下:

if ( fast_test
     && slower_test(with,some,parameters)
     && (really_slow_test(with,plenty,of,parameters))
 {
  ...then code...
 }
Run Code Online (Sandbox Code Playgroud)

我的目标是首先运行最快的UDF

Pan*_*nos 5

正如stefanobaghino所说,分析器的模式在分析后被缓存,优化器不应该更改它.

如果您使用Spark 2.2,您可以利用SPARK-18127并在Analyzer中应用规则.

如果你运行这个虚拟应用程序

package panos.bletsos

import org.apache.spark.sql.catalyst.expressions.NamedExpression
import org.apache.spark.sql.{Dataset, SparkSession}
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.SparkSessionExtensions


case class ReorderColumnsOnProjectOptimizationRule(spark: SparkSession) extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transformDown  {
    case p: Project => {
      val fields = p.projectList
      if (checkConditions(fields, p.child)) {
        val modifiedFieldsObject = optimizePlan(fields, p.child, plan)
        val projectUpdated = p.copy(modifiedFieldsObject, p.child)
        projectUpdated
      } else {
        p
      }
    }
  }

  private def checkConditions(fields: Seq[NamedExpression], child: LogicalPlan): Boolean = {
    // compare UDFs computation cost and return Boolean
    val needsOptimization = listHaveTwoUDFsEnabledForOptimization(fields)
    if (needsOptimization) println(fields.mkString(" | "))
    needsOptimization
  }

  private def listHaveTwoUDFsEnabledForOptimization(fields: Seq[NamedExpression]): Boolean = {
    // a simple priority order based on UDF name suffix
    val myPriorityList = fields.map((e) => {
      if (e.name.toString().startsWith("udf")) {
        Integer.parseInt(e.name.toString().split("_")(1))
      } else {
        0
      }
    }).filter(e => e > 0)

    // Do UDF with less cost before, so I need change the fields order
    myPriorityList.size == 2 && myPriorityList(0) > myPriorityList(1)
  }

  private def optimizePlan(fields: Seq[NamedExpression],
    child: LogicalPlan,
    plan: LogicalPlan): Seq[NamedExpression] = {
    // change order on field list. Return LogicalPlan modified
    val myListWithUDF = fields.filter((e) =>  e.name.toString().startsWith("udf"))
    if (myListWithUDF.size != 2) {
      throw new UnsupportedOperationException(
        s"The size of UDF list have ${myListWithUDF.size} elements.")
    }
    val myModifiedList: Seq[NamedExpression] = Seq(myListWithUDF(1), myListWithUDF(0))
    val myListWithoutUDF = fields.filter((e) =>  !e.name.toString().startsWith("udf"))
    val modifiedFielsObject = getFieldsReordered(myListWithoutUDF, myModifiedList)
    val msg = "•••• optimizePlan called : " + fields.size + " columns on Project.\n" +
      "•••• fields: " + fields.mkString(" | ") + "\n" +
      "•••• UDFs to reorder:\n" + myListWithUDF.mkString(" | ") + "\n" +
      "•••• field list Without UDF: " + myListWithoutUDF.mkString(" | ") + "\n" +
      "•••• modifiedFielsObject: " + modifiedFielsObject.mkString(" | ") + "\n"
    modifiedFielsObject
  }

  private def getFieldsReordered(fieldsWithoutUDFs: Seq[NamedExpression],
    fieldsWithUDFs: Seq[NamedExpression]): Seq[NamedExpression] = {
    fieldsWithoutUDFs.union(fieldsWithUDFs)
  }
}

case class R0(x: Int,
  p: Option[Int] = Some((new scala.util.Random).nextInt(999)),
  q: Option[Int] = Some((new scala.util.Random).nextInt(999))
)

object App {
  def main(args : Array[String]) {
    type ExtensionsBuilder = SparkSessionExtensions => Unit
    // inject the rule here
    val f: ExtensionsBuilder = { e =>
      e.injectResolutionRule(ReorderColumnsOnProjectOptimizationRule)
    }

    val spark = SparkSession
      .builder()
      .withExtensions(f)
      .getOrCreate()

    def createDsR0(spark: SparkSession): Dataset[R0] = {
      import spark.implicits._
      val ds = spark.range(3)
      val xdsR0 = ds.map((i) => {
        R0(i.intValue() + 1)
      })
      // IMPORTANT: The cache here is mandatory
      xdsR0.cache()
    }

    val dsR0 = createDsR0(spark)
    val udfA_99 = (p: Int) => Math.cos(p * p)  // higher cost Function
    val udfB_10 = (q: Int) => q + 1            // lower cost Function

    println("*** I' going to register my UDF ***")
    spark.udf.register("myUdfA", udfA_99)
    spark.udf.register("myUdfB", udfB_10)

    val dsR1 = {
      val ret1DS = dsR0.selectExpr("x", "p", "q", "myUdfA(p) as udfA_99")
      val result = ret1DS.cache()
      dsR0.show()
      result.show()

      result
    }

    val dsR2 = {
      val ret2DS = dsR1.selectExpr("x", "p", "q", "udfA_99", "myUdfB(p) as udfB_10")
      val result = ret2DS.cache()
      dsR0.show()
      dsR1.show()
      result.show()

      result
    }
  }
}
Run Code Online (Sandbox Code Playgroud)

它会打印出来

+---+---+---+-------+-------------------+
|  x|  p|  q|udfB_10|            udfA_99|
+---+---+---+-------+-------------------+
|  1|392|746|    393|-0.7508388993643841|
|  2|778|582|    779| 0.9310990915956336|
|  3|661| 34|    662| 0.6523545972748773|
+---+---+---+-------+-------------------+
Run Code Online (Sandbox Code Playgroud)