k 表示聚类方法得分为负

ash*_*mar 4 cluster-analysis machine-learning k-means python-3.x scikit-learn

伙计们。我还是一个尝试学习 ML 的初学者,所以请原谅我提出这么简单的问题。我有一个来自 UCI ML Repository 的数据集。于是,开始应用各种无监督算法,其中我还应用了K Means Cluster算法。当我打印出准确度分数时,结果是负数,不仅仅是一次,而是很多次。据我所知分数不是负数。那么您能帮我解释为什么它是负面的吗?

任何帮助表示赞赏。

    import pandas as pd
import numpy as np

a = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data', names = ["a", "b", "c", "d","e","f","g","h","i"])

b = a

c = b.filter(a.columns[[8]], axis=1)
a.drop(a.columns[[8]], axis=1, inplace=True)

from sklearn.preprocessing import LabelEncoder

le1 = LabelEncoder()
le1.fit(a.a)
a.a = le1.transform(a.a)

from sklearn.preprocessing import OneHotEncoder

x = np.array(a)
y = np.array(c)

ohe = OneHotEncoder(categorical_features=[0])

ohe.fit(x)

x = ohe.transform(x).toarray()

from sklearn.model_selection import train_test_split

xtr, xts, ytr, yts = train_test_split(x,y,test_size=0.2)

from sklearn import cluster

kmean = cluster.KMeans(n_clusters=2, init='k-means++', max_iter=100, n_init=10)
kmean.fit(xtr,ytr)
print(kmean.score(xts,yts))
Run Code Online (Sandbox Code Playgroud)

谢谢你!!

cri*_*tum 5

k 均值分数指示点距质心的距离。在 scikit learn 中,分数越接近零越好。

不好的分数会返回一个很大的负数,而好的分数会返回接近于零的值。通常,您需要取分数方法输出的绝对值以获得更好的可视化效果。