基准测试是在 intel core i5, Ubuntu
java version "1.8.0_144"
Java(TM) SE Runtime Environment (build 1.8.0_144-b01)
Java HotSpot(TM) 64-Bit Server VM (build 25.144-b01, mixed mode)
Run Code Online (Sandbox Code Playgroud)
我正在比较Collectors.counting和的表现Collectors.summingLong(x -> 1L).这是基准:
public List<Integer> ints = new ArrayList<>();
Collector<Integer, ?, Long> counting = Collectors.counting();
Collector<Integer, ?, Long> summingLong = Collectors.summingLong(x -> 1L);
@Setup
public void setup() throws Exception{
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
ints.add(new Random().nextInt(1000));
}
@Benchmark
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
public Long counting() {
return ints.stream().collect(counting);
}
@Benchmark
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
public Long summingLong() {
return ints.stream().collect(summingLong);
}
Run Code Online (Sandbox Code Playgroud)
我的结果Collectors.counting慢了3倍Collectors.summingLong.
所以我-prof perfnorm用25个叉子运行它.结果如下:
Benchmark Mode Cnt Score Error Units
MyBenchmark.counting avgt 125 87.115 ± 3.787 ns/op
MyBenchmark.counting:CPI avgt 25 0.310 ± 0.011 #/op
MyBenchmark.counting:L1-dcache-load-misses avgt 25 1.963 ± 0.171 #/op
MyBenchmark.counting:L1-dcache-loads avgt 25 258.716 ± 41.458 #/op
MyBenchmark.counting:L1-dcache-store-misses avgt 25 1.890 ± 0.168 #/op
MyBenchmark.counting:L1-dcache-stores avgt 25 131.344 ± 16.433 #/op
MyBenchmark.counting:L1-icache-load-misses avgt 25 0.035 ± 0.007 #/op
MyBenchmark.counting:LLC-loads avgt 25 0.411 ± 0.143 #/op
MyBenchmark.counting:LLC-stores avgt 25 0.007 ± 0.001 #/op
MyBenchmark.counting:branch-misses avgt 25 0.029 ± 0.017 #/op
MyBenchmark.counting:branches avgt 25 139.669 ± 21.901 #/op
MyBenchmark.counting:cycles avgt 25 261.967 ± 29.392 #/op
MyBenchmark.counting:dTLB-load-misses avgt 25 0.036 ± 0.003 #/op
MyBenchmark.counting:dTLB-loads avgt 25 258.111 ± 41.008 #/op
MyBenchmark.counting:dTLB-store-misses avgt 25 0.001 ± 0.001 #/op
MyBenchmark.counting:dTLB-stores avgt 25 131.394 ± 16.166 #/op
MyBenchmark.counting:iTLB-load-misses avgt 25 0.001 ± 0.001 #/op
MyBenchmark.counting:iTLB-loads avgt 25 0.001 ± 0.001 #/op
MyBenchmark.counting:instructions avgt 25 850.262 ± 113.228 #/op
MyBenchmark.counting:stalled-cycles-frontend avgt 25 48.493 ± 8.968 #/op
MyBenchmark.summingLong avgt 125 37.238 ± 0.194 ns/op
MyBenchmark.summingLong:CPI avgt 25 0.311 ± 0.002 #/op
MyBenchmark.summingLong:L1-dcache-load-misses avgt 25 1.793 ± 0.013 #/op
MyBenchmark.summingLong:L1-dcache-loads avgt 25 93.785 ± 0.640 #/op
MyBenchmark.summingLong:L1-dcache-store-misses avgt 25 1.727 ± 0.013 #/op
MyBenchmark.summingLong:L1-dcache-stores avgt 25 56.249 ± 0.408 #/op
MyBenchmark.summingLong:L1-icache-load-misses avgt 25 0.020 ± 0.003 #/op
MyBenchmark.summingLong:LLC-loads avgt 25 0.843 ± 0.117 #/op
MyBenchmark.summingLong:LLC-stores avgt 25 0.004 ± 0.001 #/op
MyBenchmark.summingLong:branch-misses avgt 25 0.008 ± 0.002 #/op
MyBenchmark.summingLong:branches avgt 25 61.472 ± 0.260 #/op
MyBenchmark.summingLong:cycles avgt 25 110.949 ± 0.784 #/op
MyBenchmark.summingLong:dTLB-load-misses avgt 25 0.031 ± 0.001 #/op
MyBenchmark.summingLong:dTLB-loads avgt 25 93.662 ± 0.616 #/op
MyBenchmark.summingLong:dTLB-store-misses avgt 25 ? 10?³ #/op
MyBenchmark.summingLong:dTLB-stores avgt 25 56.302 ± 0.351 #/op
MyBenchmark.summingLong:iTLB-load-misses avgt 25 0.001 ± 0.001 #/op
MyBenchmark.summingLong:iTLB-loads avgt 25 ? 10?³ #/op
MyBenchmark.summingLong:instructions avgt 25 357.029 ± 1.712 #/op
MyBenchmark.summingLong:stalled-cycles-frontend avgt 25 10.074 ± 1.096 #/op
Run Code Online (Sandbox Code Playgroud)
我注意到的是:
branches,instructions,cycles 不同之近3倍.还缓存操作.分支似乎很好预测,也没有太多的缓存未命中(只有我的意见).
所以问题可能在于编译后的代码.跑吧-prof perfasm(太久不能把它放在这里).
在编译代码中,我注意到以下内容:
一, Collectors.summingLong 装配
我们有3个循环遍历数组并进行计数.首先只计算一个元素
0x00007f9abd226dfd: mov %edi,%ebp ;contains the iteration index
incl %ebp
;...
0x00007f9abd226e27: incl %edi
0x00007f9abd226e29: cmp %ebp,%edi
0x00007f9abd226e2b: jnl 0x7f9abd226e34 ;exit after the first iteration
Run Code Online (Sandbox Code Playgroud)
第二次计算1次迭代的4个元素(该循环是否展开?)并且在第一次迭代之后退出.
0x00007f9abd226ea6: add $0x1,%rsi
;...
0x00007f9abd226ed0: add $0x2,%rsi
;...
0x00007f9abd226efa: add $0x3,%rsi
;...
0x00007f9abd226f1c: add $0x4,%rbx
;...
0x00007f9abd226f20: mov %rbx,0x10(%r14)
Run Code Online (Sandbox Code Playgroud)
第三个是其他元素.
二.Collectors.counting 部件
我们只有一个循环一个接一个地计算所有元素(未展开).此外,我们在计数结果的循环内嵌入了拳击转换.此外,我们似乎没有在循环内部内联拳击转换
0x00007f80dd22dfb5: mov $0x1,%esi
0x00007f80dd22dfba: nop
0x00007f80dd22dfbb: callq 0x7f80dd046420
Run Code Online (Sandbox Code Playgroud)
这似乎执行1Llambda提供的拳击e -> 1L.但目前尚不清楚原因.在执行实际添加时,我们有以下代码:
0x00007f80dd22dfec: mov $0x1,%r10d
0x00007f80dd22dff2: add 0x10(%r11),%r10
Run Code Online (Sandbox Code Playgroud)
此外,我们mov %r10d,0x10(%rsp)在第一种情况下将计数结果存储在堆栈内而不是堆中.
如果我对正在发生的事情的调查是正确的,那么我有
问题:那个循环展开拳击转换导致3倍减速吗?如果是这样,为什么没有运行时在这种counting情况下展开循环?
请注意,Collectors.summingLongGC压力比GC多2.5 Collectors.counting.这不太清楚(我只能猜测我们将中间值存储在堆栈中Collectors.counting).
MyBenchmark.counting avgt 5 96.956 ± 4.412 ns/op
MyBenchmark.counting:·gc.alloc.rate avgt 5 734.538 ± 33.083 MB/sec
MyBenchmark.counting:·gc.alloc.rate.norm avgt 5 112.000 ± 0.001 B/op
MyBenchmark.counting:·gc.churn.PS_Eden_Space avgt 5 731.423 ± 340.767 MB/sec
MyBenchmark.counting:·gc.churn.PS_Eden_Space.norm avgt 5 111.451 ± 48.411 B/op
MyBenchmark.counting:·gc.churn.PS_Survivor_Space avgt 5 0.017 ± 0.067 MB/sec
MyBenchmark.counting:·gc.churn.PS_Survivor_Space.norm avgt 5 0.003 ± 0.010 B/op
MyBenchmark.counting:·gc.count avgt 5 16.000 counts
MyBenchmark.counting:·gc.time avgt 5 12.000 ms
MyBenchmark.summingLong avgt 5 38.371 ± 1.733 ns/op
MyBenchmark.summingLong:·gc.alloc.rate avgt 5 1856.581 ± 81.706 MB/sec
MyBenchmark.summingLong:·gc.alloc.rate.norm avgt 5 112.000 ± 0.001 B/op
MyBenchmark.summingLong:·gc.churn.PS_Eden_Space avgt 5 1876.736 ± 192.503 MB/sec
MyBenchmark.summingLong:·gc.churn.PS_Eden_Space.norm avgt 5 113.213 ± 9.916 B/op
MyBenchmark.summingLong:·gc.churn.PS_Survivor_Space avgt 5 0.033 ± 0.072 MB/sec
MyBenchmark.summingLong:·gc.churn.PS_Survivor_Space.norm avgt 5 0.002 ± 0.004 B/op
MyBenchmark.summingLong:·gc.count avgt 5 62.000 counts
MyBenchmark.summingLong:·gc.time avgt 5 48.000 ms
Run Code Online (Sandbox Code Playgroud)
我没有看集会或分析它,但看看源已经提供了一些信息.
summingLong() 结果在这个收藏家:
new CollectorImpl<>(
() -> new long[1],
(a, t) -> { a[0] += mapper.applyAsLong(t); },
(a, b) -> { a[0] += b[0]; return a; },
a -> a[0], CH_NOID);
Run Code Online (Sandbox Code Playgroud)
counting() 结果如下:
new CollectorImpl<>(
boxSupplier(identity),
(a, t) -> { a[0] = op.apply(a[0], mapper.apply(t)); },
(a, b) -> { a[0] = op.apply(a[0], b[0]); return a; },
a -> a[0], CH_NOID);
Run Code Online (Sandbox Code Playgroud)
如您所见,该counting()版本正在做更多的事情:
op.apply(...)由于op被Long::sum其上运行的原语有invoved大量装箱和拆箱的.
| 归档时间: |
|
| 查看次数: |
131 次 |
| 最近记录: |