Ker*_* SB 379 c++ templates operator-overloading pretty-print c++11
Please take note of the updates at the end of this post.
Update: I have created a public project on GitHub for this library!
I would like to have a single template that once and for all takes care of pretty-printing all STL containers via operator<<. In pseudo code, I'm looking for something like this:
template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
o << open;
// for (typename C::const_iterator i = x.begin(); i != x.end(); i++) /* Old-school */
for (auto i = x.begin(); i != x.end(); i++)
{
if (i != x.begin()) o << delim;
o << *i;
}
o << close;
return o;
}
Run Code Online (Sandbox Code Playgroud)
Now I've seen plenty of template magic here on SO that I never thought possible, so I'm wondering if anyone can suggest something that would match all containers C. Maybe something trait-ish that can figure out if something has the necessary iterator?
Many thanks!
Update (and solution)
After raising this problem again on Channel 9, I got a fantastic answer from Sven Groot, which, combined with a bit of SFINAE type traiting, appears to solve the problem in a completely general and nestable fashion. The delimiters may be individually specialised, an example specialization for std::set is included, as well as an example of using custom delimiters.
The helper "wrap_array()" can be used to print raw C arrays. Update: Pairs and tuples are available for printing; default delimiters are round brackets.
The enable-if type trait requires C++0x, but with some modifications it should be possible to make a C++98 version of this. Tuples require variadic templates, hence C++0x.
I have asked Sven to post the solution here so that I can accept it, but in the meantime I'd like to post the code myself for reference. (Update: Sven has now posted his code below, which I made the accepted answer. My own code uses container type traits, which work for me but may cause unexpected behaviour with non-container classes that provide iterators.)
Header (prettyprint.h):
#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT
#include <type_traits>
#include <iostream>
#include <utility>
#include <tuple>
namespace std
{
// Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
template<typename T, typename TTraits, typename TAllocator> class set;
}
namespace pretty_print
{
// SFINAE type trait to detect a container based on whether T::const_iterator exists.
// (Improvement idea: check also if begin()/end() exist.)
template<typename T>
struct is_container_helper
{
private:
template<typename C> static char test(typename C::const_iterator*);
template<typename C> static int test(...);
public:
static const bool value = sizeof(test<T>(0)) == sizeof(char);
};
// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public ::std::integral_constant<bool, is_container_helper<T>::value> { };
// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
typedef TChar char_type;
const TChar * prefix;
const TChar * delimiter;
const TChar * postfix;
};
// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
typedef delimiters_values<TChar> type;
static const type values;
};
// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };
// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters< ::std::set<T, TTraits, TAllocator>, char>::values = { "{", ", ", "}" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
// Delimiters for pair (reused for tuple, see below)
template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters< ::std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };
// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = ::std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar>>
struct print_container_helper
{
typedef TChar char_type;
typedef TDelimiters delimiters_type;
typedef std::basic_ostream<TChar, TCharTraits> & ostream_type;
print_container_helper(const T & container)
: _container(container)
{
}
inline void operator()(ostream_type & stream) const
{
if (delimiters_type::values.prefix != NULL)
stream << delimiters_type::values.prefix;
for (typename T::const_iterator beg = _container.begin(), end = _container.end(), it = beg; it != end; ++it)
{
if (it != beg && delimiters_type::values.delimiter != NULL)
stream << delimiters_type::values.delimiter;
stream << *it;
}
if (delimiters_type::values.postfix != NULL)
stream << delimiters_type::values.postfix;
}
private:
const T & _container;
};
// Type-erasing helper class for easy use of custom delimiters.
// Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
// Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".
struct custom_delims_base
{
virtual ~custom_delims_base() { }
virtual ::std::ostream & stream(::std::ostream &) = 0;
virtual ::std::wostream & stream(::std::wostream &) = 0;
};
template <typename T, typename Delims>
struct custom_delims_wrapper : public custom_delims_base
{
custom_delims_wrapper(const T & t) : t(t) { }
::std::ostream & stream(::std::ostream & stream)
{
return stream << ::pretty_print::print_container_helper<T, char, ::std::char_traits<char>, Delims>(t);
}
::std::wostream & stream(::std::wostream & stream)
{
return stream << ::pretty_print::print_container_helper<T, wchar_t, ::std::char_traits<wchar_t>, Delims>(t);
}
private:
const T & t;
};
template <typename Delims>
struct custom_delims
{
template <typename Container> custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
~custom_delims() { delete base; }
custom_delims_base * base;
};
} // namespace pretty_print
template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & stream, const pretty_print::custom_delims<Delims> & p)
{
return p.base->stream(stream);
}
// Template aliases for char and wchar_t delimiters
// Enable these if you have compiler support
//
// Implement as "template<T, C, A> const sdelims::type sdelims<std::set<T,C,A>>::values = { ... }."
//template<typename T> using pp_sdelims = pretty_print::delimiters<T, char>;
//template<typename T> using pp_wsdelims = pretty_print::delimiters<T, wchar_t>;
namespace std
{
// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream,
const ::pretty_print::print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
{
helper(stream);
return stream;
}
// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
inline typename enable_if< ::pretty_print::is_container<T>::value, basic_ostream<TChar, TCharTraits>&>::type
operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
{
return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
}
// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const pair<T1, T2> & value)
{
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix;
stream << value.first;
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter;
stream << value.second;
if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix != NULL)
stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix;
return stream;
}
} // namespace std
// Prints a tuple to the stream using delimiters from delimiters<std::pair<tuple_dummy_t, tuple_dummy_t>>.
namespace pretty_print
{
struct tuple_dummy_t { }; // Just if you want special delimiters for tuples.
typedef std::pair<tuple_dummy_t, tuple_dummy_t> tuple_dummy_pair;
template<typename Tuple, size_t N, typename TChar, typename TCharTraits>
struct pretty_tuple_helper
{
static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value)
{
pretty_tuple_helper<Tuple, N - 1, TChar, TCharTraits>::print(stream, value);
if (delimiters<tuple_dummy_pair, TChar>::values.delimiter != NULL)
stream << delimiters<tuple_dummy_pair, TChar>::values.delimiter;
stream << std::get<N - 1>(value);
}
};
template<typename Tuple, typename TChar, typename TCharTraits>
struct pretty_tuple_helper<Tuple, 1, TChar, TCharTraits>
{
static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value) { stream << ::std::get<0>(value); }
};
} // namespace pretty_print
namespace std
{
template<typename TChar, typename TCharTraits, typename ...Args>
inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const tuple<Args...> & value)
{
if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix != NULL)
stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix;
::pretty_print::pretty_tuple_helper<const tuple<Args...> &, sizeof...(Args), TChar, TCharTraits>::print(stream, value);
if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix != NULL)
stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix;
return stream;
}
} // namespace std
// A wrapper for raw C-style arrays. Usage: int arr[] = { 1, 2, 4, 8, 16 }; std::cout << wrap_array(arr) << ...
namespace pretty_print
{
template <typename T, size_t N>
struct array_wrapper
{
typedef const T * const_iterator;
typedef T value_type;
array_wrapper(const T (& a)[N]) : _array(a) { }
inline const_iterator begin() const { return _array; }
inline const_iterator end() const { return _array + N; }
private:
const T * const _array;
};
} // namespace pretty_print
template <typename T, size_t N>
inline pretty_print::array_wrapper<T, N> pretty_print_array(const T (& a)[N])
{
return pretty_print::array_wrapper<T, N>(a);
}
#endif
Run Code Online (Sandbox Code Playgroud)
Usage example:
#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <array>
#include <tuple>
#include <utility>
#include <string>
#include "prettyprint.h"
// Specialization for a particular container
template<> const pretty_print::delimiters_values<char> pretty_print::delimiters<std::vector<double>, char>::values = { "|| ", " : ", " ||" };
// Custom delimiters for one-off use
struct MyDel { static const delimiters_values<char> values; };
const delimiters_values<char> MyDel::values = { "<", "; ", ">" };
int main(int argc, char * argv[])
{
std::string cs;
std::unordered_map<int, std::string> um;
std::map<int, std::string> om;
std::set<std::string> ss;
std::vector<std::string> v;
std::vector<std::vector<std::string>> vv;
std::vector<std::pair<int, std::string>> vp;
std::vector<double> vd;
v.reserve(argc - 1);
vv.reserve(argc - 1);
vp.reserve(argc - 1);
vd.reserve(argc - 1);
std::cout << "Printing pairs." << std::endl;
while (--argc)
{
std::string s(argv[argc]);
std::pair<int, std::string> p(argc, s);
um[argc] = s;
om[argc] = s;
v.push_back(s);
vv.push_back(v);
vp.push_back(p);
vd.push_back(1./double(i));
ss.insert(s);
cs += s;
std::cout << " " << p << std::endl;
}
std::array<char, 5> a{{ 'h', 'e', 'l', 'l', 'o' }};
std::cout << "Vector: " << v << std::endl
<< "Incremental vector: " << vv << std::endl
<< "Another vector: " << vd << std::endl
<< "Pairs: " << vp << std::endl
<< "Set: " << ss << std::endl
<< "OMap: " << om << std::endl
<< "UMap: " << um << std::endl
<< "String: " << cs << std::endl
<< "Array: " << a << std::endl
;
// Using custom delimiters manually:
std::cout << pretty_print::print_container_helper<std::vector<std::string>, char, std::char_traits<char>, MyDel>(v) << std::endl;
// Using custom delimiters with the type-erasing helper class
std::cout << pretty_print::custom_delims<MyDel>(v) << std::endl;
// Pairs and tuples and arrays:
auto a1 = std::make_pair(std::string("Jello"), 9);
auto a2 = std::make_tuple(1729);
auto a3 = std::make_tuple("Qrgh", a1, 11);
auto a4 = std::make_tuple(1729, 2875, std::pair<double, std::string>(1.5, "meow"));
int arr[] = { 1, 4, 9, 16 };
std::cout << "C array: " << wrap_array(arr) << std::endl
<< "Pair: " << a1 << std::endl
<< "1-tuple: " << a2 << std::endl
<< "n-tuple: " << a3 << std::endl
<< "n-tuple: " << a4 << std::endl
;
}
Run Code Online (Sandbox Code Playgroud)
Further ideas for improvements:
std::tuple<...> in the same way is we have it for std::pair<S,T>.最近更新:
pretty_print命名空间中.只有全局流操作符和pretty_print_array包装器位于全局命名空间中.operator<<现在正确使用std.笔记:
std::copy()来进行漂亮的打印.如果这是一个理想的功能,我可能会恢复漂亮的迭代器,但下面的Sven代码有实现.谢谢所有贡献的人!
注意:如果您正在寻找一种快速部署自定义分隔符的方法,这里有一种使用类型擦除的方法.我们假设你已经构建了一个分隔符类,比如说MyDel:
struct MyDel { static const pretty_print::delimiters_values<char> values; };
const pretty_print::delimiters_values<char> MyDel::values = { "<", "; ", ">" };
Run Code Online (Sandbox Code Playgroud)
现在我们希望能够使用这些分隔符std::cout << MyPrinter(v) << std::endl;为某个容器编写代码v.MyPrinter将是一个类型擦除类,如下所示:
struct wrapper_base
{
virtual ~wrapper_base() { }
virtual std::ostream & stream(std::ostream & o) = 0;
};
template <typename T, typename Delims>
struct wrapper : public wrapper_base
{
wrapper(const T & t) : t(t) { }
std::ostream & stream(std::ostream & o)
{
return o << pretty_print::print_container_helper<T, char, std::char_traits<char>, Delims>(t);
}
private:
const T & t;
};
template <typename Delims>
struct MyPrinter
{
template <typename Container> MyPrinter(const Container & c) : base(new wrapper<Container, Delims>(c)) { }
~MyPrinter() { delete base; }
wrapper_base * base;
};
template <typename Delims>
std::ostream & operator<<(std::ostream & o, const MyPrinter<Delims> & p) { return p.base->stream(o); }
Run Code Online (Sandbox Code Playgroud)
Sve*_*ven 83
这个解决方案的灵感来自Marcelo的解决方案,但有一些变化:
#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>
// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
typedef TChar char_type;
typedef TCharTraits traits_type;
typedef std::basic_ostream<TChar, TCharTraits> ostream_type;
pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
: _stream(&stream), _delim(delim), _insertDelim(false)
{
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
{
if( _delim != NULL )
{
// Don't insert a delimiter if this is the first time the function is called
if( _insertDelim )
(*_stream) << _delim;
else
_insertDelim = true;
}
(*_stream) << value;
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
{
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
{
return *this;
}
pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
{
return *this;
}
private:
ostream_type *_stream;
const char_type *_delim;
bool _insertDelim;
};
#if _MSC_VER >= 1400
// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};
#endif // _MSC_VER >= 1400
namespace std
{
// Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
// These aren't necessary if you do actually include the headers.
template<typename T, typename TAllocator> class vector;
template<typename T, typename TAllocator> class list;
template<typename T, typename TTraits, typename TAllocator> class set;
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}
// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };
// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };
// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };
// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };
// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };
// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
typedef TChar char_type;
const TChar *prefix;
const TChar *delimiter;
const TChar *postfix;
};
// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
static const delimiters_values<TChar> values;
};
// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };
// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };
// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };
// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
typedef TChar char_type;
typedef TDelimiters delimiters_type;
typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;
print_container_helper(const T &container)
: _container(&container)
{
}
void operator()(ostream_type &stream) const
{
if( delimiters_type::values.prefix != NULL )
stream << delimiters_type::values.prefix;
std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
if( delimiters_type::values.postfix != NULL )
stream << delimiters_type::values.postfix;
}
private:
const T *_container;
};
// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
helper(stream);
return stream;
}
// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
stream << print_container_helper<T, TChar, TCharTraits>(container);
return stream;
}
// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;
stream << value.first;
if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;
stream << value.second;
if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
return stream;
}
// Used by the sample below to generate some values
struct fibonacci
{
fibonacci() : f1(0), f2(1) { }
int operator()()
{
int r = f1 + f2;
f1 = f2;
f2 = r;
return f1;
}
private:
int f1;
int f2;
};
int main()
{
std::vector<int> v;
std::generate_n(std::back_inserter(v), 10, fibonacci());
std::cout << v << std::endl;
// Example of using pretty_ostream_iterator directly
std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
std::cout << std::endl;
}
Run Code Online (Sandbox Code Playgroud)
与Marcelo的版本一样,它使用is_container类型特征,该特征必须专用于所有要支持的容器.它可能会使用特点来检查value_type,const_iterator,begin()/ end(),但我不知道我建议,因为它可能匹配匹配这些标准,但实际上不是容器,喜欢的东西std::basic_string.与Marcelo的版本一样,它使用专门用于指定要使用的分隔符的模板.
主要区别在于我已经围绕a构建了我的版本pretty_ostream_iterator,其工作方式类似于std::ostream_iterator但不会在最后一项之后打印分隔符.格式化容器是通过print_container_helper,可以直接用于打印没有is_container特征的容器,或指定不同的分隔符类型.
我还定义了is_container和delimiters,因此它适用于具有非标准谓词或分配器的容器,以及char和wchar_t.operator <<函数本身也被定义为使用char和wchar_t流.
最后,我使用过std::enable_if,它可以作为C++ 0x的一部分使用,并且可以在Visual C++ 2010和g ++ 4.3(需要-std = c ++ 0x标志)和更高版本中使用.这种方式不依赖于Boost.
Cas*_*Cow 22
这已被编辑了几次,我们决定调用包装集合RangePrinter的主类
一旦您编写了一次性操作符<< overload,这将自动与任何集合一起工作,除了您需要一个特殊的地图来打印该对,并且可能想要在那里自定义分隔符.
您还可以在项目上使用特殊的"打印"功能,而不是直接输出.有点像STL算法允许您传递自定义谓词.使用map,您可以使用这种方式,使用std :: pair的自定义打印机.
您的"默认"打印机只会将其输出到流.
好吧,让我们使用自定义打印机.我将我的外部类更改为RangePrinter.所以我们有2个迭代器和一些分隔符,但没有自定义如何打印实际项目.
struct DefaultPrinter
{
template< typename T >
std::ostream & operator()( std::ostream& os, const T& t ) const
{
return os << t;
}
// overload for std::pair
template< typename K, typename V >
std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
{
return os << p.first << '=' << p.second;
}
};
// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;
template< typename FwdIter, typename Printer >
std::ostream & operator<<( std::ostream &,
RangePrinter<FwdIter, Printer> const& );
template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
FwdIter begin;
FwdIter end;
std::string delim;
std::string open;
std::string close;
Printer printer;
friend std::ostream& operator<< <>( std::ostream&,
RangePrinter<FwdIter,Printer> const& );
public:
RangePrinter( FwdIter b, FwdIter e, Printer p,
std::string const& d, std::string const & o, std::string const& c )
: begin( b ), end( e ), printer( p ), open( o ), close( c )
{
}
// with no "printer" variable
RangePrinter( FwdIter b, FwdIter e,
std::string const& d, std::string const & o, std::string const& c )
: begin( b ), end( e ), open( o ), close( c )
{
}
};
template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os,
RangePrinter<FwdIter, Printer> const& range )
{
const Printer & printer = range.printer;
os << range.open;
FwdIter begin = range.begin, end = range.end;
// print the first item
if (begin == end)
{
return os << range.close;
}
printer( os, *begin );
// print the rest with delim as a prefix
for( ++begin; begin != end; ++begin )
{
os << range.delim;
printer( os, *begin );
}
return os << range.close;
}
Run Code Online (Sandbox Code Playgroud)
现在默认情况下它只适用于地图,只要键和值类型都是可打印的,你可以放入你自己的特殊项目打印机,当它们不是(你可以使用任何其他类型),或者如果你不想要=作为分隔符.
我正在移动自由函数来创建这些到现在为止:
一个自由函数(迭代器版本)看起来像这样,你甚至可以有默认值:
template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
( const Collection& coll, const char * delim=",",
const char * open="[", const char * close="]")
{
return RangePrinter< typename Collection::const_iterator >
( coll.begin(), coll.end(), delim, open, close );
}
Run Code Online (Sandbox Code Playgroud)
然后你可以将它用于std :: set by
std::cout << outputFormatter( mySet );
Run Code Online (Sandbox Code Playgroud)
您还可以编写采用自定义打印机的自由功能版本和采用两个迭代器的自由功能版本.在任何情况下,他们都会为您解析模板参数,您将能够将它们作为临时传递.
Mar*_*tos 15
这是一个工作库,作为一个完整的工作程序呈现,我刚刚一起攻击:
#include <set>
#include <vector>
#include <iostream>
#include <boost/utility/enable_if.hpp>
// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};
template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T> > { enum { value = true }; };
template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
o << Delims<C>::delim[0];
for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
{
if (i != x.begin()) o << Delims<C>::delim[1];
o << *i;
}
o << Delims<C>::delim[2];
return o;
}
template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };
template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
o << "[";
for (int i = 0; i != N; ++i)
{
if (i) o << ",";
o << x[i];
}
o << "]";
return o;
}
int main()
{
std::vector<int> i;
i.push_back(23);
i.push_back(34);
std::set<std::string> j;
j.insert("hello");
j.insert("world");
double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };
std::cout << i << "\n" << j << "\n" << k << "\n";
}
Run Code Online (Sandbox Code Playgroud)
它目前仅适用于vector和set,但可以使用大多数容器,只需扩展IsContainer专业化.我没有想过这个代码是否是最小的,但我不能立即想到任何我可以删除的冗余.
编辑:只是为了踢,我包括一个处理数组的版本.我不得不排除char数组以避免进一步的模糊; 它可能仍会遇到麻烦wchar_t[].
您可以使用{fmt}库来格式化容器以及范围和元组。例如:
#include <vector>
#include <fmt/ranges.h>
int main() {
auto v = std::vector<int>{1, 2, 3};
fmt::print("{}", v);
}
Run Code Online (Sandbox Code Playgroud)
版画
{1, 2, 3}
Run Code Online (Sandbox Code Playgroud)
到stdout。
免责声明:我是{fmt}的作者。
现在,这些代码在几个方面被证明是方便的,我觉得进入自定义的费用很低.因此,我决定在MIT许可下发布它,并提供一个GitHub存储库,其中可以下载标题和一个小示例文件.
一个"装饰"在这个答案的方面是一组前缀字符串,分隔字符串,以及后缀串的.前缀字符串插入到流之前和后缀字符串之后的容器值(请参阅2.目标容器).分隔符字符串插入相应容器的值之间.
注意:实际上,这个答案没有解决100%的问题,因为装饰不是严格编译的时间常数,因为需要运行时检查来检查自定义装饰是否已应用于当前流. 不过,我认为它有一些不错的功能.
注2:可能有小错误,因为它尚未经过良好测试.
它应该像保持一样简单
#include <vector>
#include "pretty.h"
int main()
{
std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
return 0;
}
Run Code Online (Sandbox Code Playgroud)
...关于特定流对象
#include <vector>
#include "pretty.h"
int main()
{
// set decoration for std::vector<int> for cout object
std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
return 0;
}
Run Code Online (Sandbox Code Playgroud)
或关于所有流:
#include <vector>
#include "pretty.h"
// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")
int main()
{
std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
return 0;
}
Run Code Online (Sandbox Code Playgroud)
ios_base使用xalloc/ pword以便指针保存到pretty::decor对象特别装饰上的特定流某一类型.如果没有pretty::decor<T>显式设置此流的对象,pretty::defaulted<T, charT, chartraitT>::decoration()则调用此方法以获取给定类型的默认装饰.该类pretty::defaulted将专门用于自定义默认装饰.
此代码obj的"漂亮装饰"的目标对象是具有其中任何一个的对象
std::begin和std::end定义(包括C风格数组),begin(obj)与end(obj)通过ADL可用,std::tuple std::pair.该代码包括用于识别具有范围特征(begin/ end)的类的特征.(但是没有包括检查,是否begin(obj) == end(obj)是一个有效的表达式.)
该代码operator<<在全局命名空间中提供s,仅适用于没有更专业版operator<<可用的类.因此,例如std::string,虽然具有有效begin/ end对,但是在该代码中不使用操作符打印.
可以为每种类型(除了不同的tuples)和流(不是流类型!)单独强加装饰.(即std::vector<int>不同的流对象可以有不同的装饰.)
默认前缀是""(无),默认后缀是默认前缀,而默认前缀是", "(逗号+空格).
pretty::defaulted类模板来定制类型的默认装饰在struct defaulted具有静态成员函数decoration()返回一个decor对象,其包括用于给定类型的默认值.
自定义默认阵列打印:
namespace pretty
{
template<class T, std::size_t N>
struct defaulted<T[N]>
{
static decor<T[N]> decoration()
{
return{ { "(" }, { ":" }, { ")" } };
}
};
}
Run Code Online (Sandbox Code Playgroud)
打印arry数组:
float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)
Run Code Online (Sandbox Code Playgroud)
PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...)用于宏char宏扩展到
namespace pretty {
template< __VA_ARGS__ >
struct defaulted< TYPE > {
static decor< TYPE > decoration() {
return { PREFIX, DELIM, POSTFIX };
}
};
}
Run Code Online (Sandbox Code Playgroud)
使上述部分专业化能够被重写
PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)
Run Code Online (Sandbox Code Playgroud)
或插入完整的专业化
PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")
Run Code Online (Sandbox Code Playgroud)
wchar_t流的另一个宏包括:PRETTY_DEFAULT_WDECORATION.
该函数pretty::decoration用于在某个流上强加装饰.有一些重载 - 一个字符串参数是分隔符(从默认类中采用前缀和后缀) - 或三个字符串参数组合完整的装饰
float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");
// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}
// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2
Run Code Online (Sandbox Code Playgroud)
PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")
std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}
v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}
v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))
Run Code Online (Sandbox Code Playgroud)
std::tuple此代码不是允许对每个可能的元组类型进行专门化,而是将所有可用的装饰应用于std::tuple<void*>所有类型的std::tuple<...>s.
要返回给定类型的默认装饰,请使用pretty::clear流上的功能模板s.
s << pretty::clear<std::vector<int>>();
Run Code Online (Sandbox Code Playgroud)
使用换行符分隔符打印"矩阵状"
std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;
Run Code Online (Sandbox Code Playgroud)
打印
1, 2, 3
4, 5, 6
7, 8, 9
Run Code Online (Sandbox Code Playgroud)
#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_
#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>
#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
namespace pretty { template< __VA_ARGS__ >\
struct defaulted< TYPE > {\
static decor< TYPE > decoration(){\
return { PREFIX, DELIM, POSTFIX };\
} /*decoration*/ }; /*defaulted*/} /*pretty*/
#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
namespace pretty { template< __VA_ARGS__ >\
struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
return { PREFIX, DELIM, POSTFIX };\
} /*decoration*/ }; /*defaulted*/} /*pretty*/
namespace pretty
{
namespace detail
{
// drag in begin and end overloads
using std::begin;
using std::end;
// helper template
template <int I> using _ol = std::integral_constant<int, I>*;
// SFINAE check whether T is a range with begin/end
template<class T>
class is_range
{
// helper function declarations using expression sfinae
template <class U, _ol<0> = nullptr>
static std::false_type b(...);
template <class U, _ol<1> = nullptr>
static auto b(U &v) -> decltype(begin(v), std::true_type());
template <class U, _ol<0> = nullptr>
static std::false_type e(...);
template <class U, _ol<1> = nullptr>
static auto e(U &v) -> decltype(end(v), std::true_type());
// return types
using b_return = decltype(b<T>(std::declval<T&>()));
using e_return = decltype(e<T>(std::declval<T&>()));
public:
static const bool value = b_return::value && e_return::value;
};
}
// holder class for data
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
struct decor
{
static const int xindex;
std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
decor(std::basic_string<CharT, TraitT> const & pre = "",
std::basic_string<CharT, TraitT> const & delim = "",
std::basic_string<CharT, TraitT> const & post = "")
: prefix(pre), delimiter(delim), postfix(post) {}
};
template<class T, class charT, class traits>
int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();
namespace detail
{
template<class T, class CharT, class TraitT>
void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
{
using deco_type = decor<T, CharT, TraitT>;
if (evt == std::ios_base::erase_event)
{ // erase deco
void const * const p = s.pword(idx);
if (p)
{
delete static_cast<deco_type const * const>(p);
s.pword(idx) = nullptr;
}
}
else if (evt == std::ios_base::copyfmt_event)
{ // copy deco
void const * const p = s.pword(idx);
if (p)
{
auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
s.pword(idx) = static_cast<void*>(np);
}
}
}
template<class T> struct clearer {};
template<class T, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT>& operator<< (
std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
{
using deco_type = decor<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
if (p)
{ // delete if set
delete static_cast<deco_type const *>(p);
s.pword(deco_type::xindex) = nullptr;
}
return s;
}
template <class CharT>
struct default_data { static const CharT * decor[3]; };
template <>
const char * default_data<char>::decor[3] = { "", ", ", "" };
template <>
const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };
}
// Clear decoration for T
template<class T>
detail::clearer<T> clear() { return{}; }
template<class T, class CharT, class TraitT>
void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }
// impose decoration on ostream
template<class T, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT>& operator<<(
std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
{
using deco_type = decor<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
// delete if already set
if (p) delete static_cast<deco_type const *>(p);
s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
// check whether we alread have a callback registered
if (s.iword(deco_type::xindex) == 0)
{ // if this is not the case register callback and set iword
s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
s.iword(deco_type::xindex) = 1;
}
return s;
}
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
struct defaulted
{
static inline decor<T, CharT, TraitT> decoration()
{
return{ detail::default_data<CharT>::decor[0],
detail::default_data<CharT>::decor[1],
detail::default_data<CharT>::decor[2] };
}
};
template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
decor<T, CharT, TraitT> decoration(
std::basic_string<CharT, TraitT> const & prefix,
std::basic_string<CharT, TraitT> const & delimiter,
std::basic_string<CharT, TraitT> const & postfix)
{
return{ prefix, delimiter, postfix };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(
std::basic_string<CharT, TraitT> const & delimiter)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ defaulted<T, CharT, TraitT>::decoration().prefix,
delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(CharT const * const prefix,
CharT const * const delimiter, CharT const * const postfix)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
{
using str_type = std::basic_string<CharT, TraitT>;
return{ defaulted<T, CharT, TraitT>::decoration().prefix,
str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
}
template<typename T, std::size_t N, std::size_t L>
struct tuple
{
template<class CharT, class TraitT>
static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
std::basic_string<CharT, TraitT> const &delimiter)
{
s << std::get<N>(value) << delimiter;
tuple<T, N + 1, L>::print(s, value, delimiter);
}
};
template<typename T, std::size_t N>
struct tuple<T, N, N>
{
template<class CharT, class TraitT>
static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
std::basic_string<CharT, TraitT> const &) {
s << std::get<N>(value);
}
};
}
template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
pretty_tuple::print(s, v, d ? d->delimiter :
defaulted_type::decoration().delimiter);
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto const d = static_cast<deco_type const * const>(p);
s << (d ? d->prefix : defaulted_type::decoration().prefix);
s << v.first;
s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
s << v.second;
s << (d ? d->postfix : defaulted_type::decoration().postfix);
return s;
}
template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
typename std::enable_if < pretty::detail::is_range<T>::value,
std::basic_ostream < CharT, TraitT >> ::type & operator<< (
std::basic_ostream<CharT, TraitT> &s, T const & v)
{
bool first(true);
using deco_type = pretty::decor<T, CharT, TraitT>;
using default_type = pretty::defaulted<T, CharT, TraitT>;
void const * const p = s.pword(deco_type::xindex);
auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
s << (d ? d->prefix : default_type::decoration().prefix);
for (auto const & e : v)
{ // v is range thus range based for works
if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
s << e;
first = false;
}
s << (d ? d->postfix : default_type::decoration().postfix);
return s;
}
#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
40171 次 |
| 最近记录: |