Ric*_*ccB 5 python memory dataframe pandas
从包含约 1500 万行(占用约 250 MB)的 pickle 加载数据帧后,我对其执行了一些搜索操作,然后就地删除了一些行。在这些操作期间,内存使用量猛增至 5 GB,有时甚至 7 GB,这很烦人,因为交换(我的笔记本电脑只有 8 GB 内存)。
关键是当操作完成时(即执行下面代码中的最后两行时),该内存不会被释放。所以 Python 进程仍然占用高达 7 GB 的内存。
知道为什么会这样吗?我正在使用 Pandas 0.20.3。
下面的最小示例。'data' 变量实际上有大约 1500 万行,但我不知道如何在这里发布它。
import datetime, pandas as pd
data = {'Time':['2013-10-29 00:00:00', '2013-10-29 00:00:08', '2013-11-14 00:00:00'], 'Watts': [0, 48, 0]}
df = pd.DataFrame(data, columns = ['Time', 'Watts'])
# Convert string to datetime
df['Time'] = pd.to_datetime(df['Time'])
# Make column Time as the index of the dataframe
df.index = df['Time']
# Delete the column time
df = df.drop('Time', 1)
# Get the difference in time between two consecutive data points
differences = df.index.to_series().diff()
# Keep only the differences > 60 mins
differences = differences[differences > datetime.timedelta(minutes=60)]
# Get the string of the day of the data points when the data gathering resumed
toRemove = [datetime.datetime.strftime(date, '%Y-%m-%d') for date in differences.index.date]
# Remove data points belonging to the day where the differences was > 60 mins
for dataPoint in toRemove:
df.drop(df[dataPoint].index, inplace=True)
Run Code Online (Sandbox Code Playgroud)