RuntimeError:尺寸超出范围(预计在[-1,0]范围内,但得到1)

Rya*_*an 3 pytorch

尝试使用unet模型训练pytorch模型(初学者)Im,我将图像输入作为输入,并随同将标签输入作为输入图像蒙版并在其上转换数据集。我从其他地方获得了unet模型,我将交叉熵损失用作损失函数,但是我得到的尺寸超出了范围误差,

    `RuntimeError                              Traceback (most recent call last)
<ipython-input-358-fa0ef49a43ae> in <module>()
     16 for epoch in range(0, num_epochs):
     17     # train for one epoch
---> 18     curr_loss = train(train_loader, model, criterion, epoch, num_epochs)
     19 
     20     # store best loss and save a model checkpoint

<ipython-input-356-1bd6c6c281fb> in train(train_loader, model, criterion, epoch, num_epochs)
     16         # measure loss
     17         print (outputs.size(),labels.size())
---> 18         loss = criterion(outputs, labels)
     19         losses.update(loss.data[0], images.size(0))
     20 

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py in     _ _call__(self, *input, **kwargs)
    323         for hook in self._forward_pre_hooks.values():
    324             hook(self, input)
--> 325         result = self.forward(*input, **kwargs)
    326         for hook in self._forward_hooks.values():
    327             hook_result = hook(self, input, result)

<ipython-input-355-db66abcdb074> in forward(self, logits, targets)
      9         probs_flat = probs.view(-1)
     10         targets_flat = targets.view(-1)
---> 11         return self.crossEntropy_loss(probs_flat, targets_flat)

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py in     __call__(self, *input, **kwargs)
    323         for hook in self._forward_pre_hooks.values():
    324             hook(self, input)
  --> 325         result = self.forward(*input, **kwargs)
    326         for hook in self._forward_hooks.values():
    327             hook_result = hook(self, input, result)

/usr/local/lib/python3.5/dist-packages/torch/nn/modules/loss.py in f orward(self, input, target)
    599         _assert_no_grad(target)
    600         return F.cross_entropy(input, target, self.weight, self.size_average,
--> 601                                self.ignore_index, self.reduce)
    602 
    603 

/usr/local/lib/python3.5/dist-packages/torch/nn/functional.py in     cross_entropy(input, target, weight, size_average, ignore_index, reduce)
   1138         >>> loss.backward()
   1139     """
-> 1140     return nll_loss(log_softmax(input, 1), target, weight, size_average, ignore_index, reduce)
   1141 
   1142 

/usr/local/lib/python3.5/dist-packages/torch/nn/functional.py in     log_softmax(input, dim, _stacklevel)
    784     if dim is None:
    785         dim = _get_softmax_dim('log_softmax', input.dim(),      _stacklevel)
--> 786     return torch._C._nn.log_softmax(input, dim)
    787 
    788 

RuntimeError: dimension out of range (expected to be in range of [-1, 0], but got 1)` 
Run Code Online (Sandbox Code Playgroud)

我的部分代码看起来像这样

`class crossEntropy(nn.Module):
def __init__(self, weight = None, size_average = True):
    super(crossEntropy, self).__init__()
    self.crossEntropy_loss = nn.CrossEntropyLoss(weight, size_average)

def forward(self, logits, targets):
    probs = F.sigmoid(logits)
    probs_flat = probs.view(-1)
    targets_flat = targets.view(-1)
    return self.crossEntropy_loss(probs_flat, targets_flat)`




`class UNet(nn.Module):
def __init__(self, imsize):
    super(UNet, self).__init__()
    self.imsize = imsize

    self.activation = F.relu

    self.pool1 = nn.MaxPool2d(2)
    self.pool2 = nn.MaxPool2d(2)
    self.pool3 = nn.MaxPool2d(2)
    self.pool4 = nn.MaxPool2d(2)
    self.conv_block1_64 = UNetConvBlock(4, 64)
    self.conv_block64_128 = UNetConvBlock(64, 128)
    self.conv_block128_256 = UNetConvBlock(128, 256)
    self.conv_block256_512 = UNetConvBlock(256, 512)
    self.conv_block512_1024 = UNetConvBlock(512, 1024)

    self.up_block1024_512 = UNetUpBlock(1024, 512)
    self.up_block512_256 = UNetUpBlock(512, 256)
    self.up_block256_128 = UNetUpBlock(256, 128)
    self.up_block128_64 = UNetUpBlock(128, 64)

    self.last = nn.Conv2d(64, 2, 1)


def forward(self, x):
    block1 = self.conv_block1_64(x)
    pool1 = self.pool1(block1)

    block2 = self.conv_block64_128(pool1)
    pool2 = self.pool2(block2)

    block3 = self.conv_block128_256(pool2)
    pool3 = self.pool3(block3)

    block4 = self.conv_block256_512(pool3)
    pool4 = self.pool4(block4)

    block5 = self.conv_block512_1024(pool4)

    up1 = self.up_block1024_512(block5, block4)

    up2 = self.up_block512_256(up1, block3)

    up3 = self.up_block256_128(up2, block2)

    up4 = self.up_block128_64(up3, block1)

    return F.log_softmax(self.last(up4))`
Run Code Online (Sandbox Code Playgroud)

任何建议,小贴士真的很有帮助

提前致谢。如果您需要更多代码,请告诉我,

sta*_*010 14

问题是您在分类问题中向torch.nn.CrossEntropyLoss传递了错误的参数。

具体来说,在这一行

---> 18         loss = criterion(outputs, labels)
Run Code Online (Sandbox Code Playgroud)

论证labels并不是我们CrossEntropyLoss所期望的。labels应该是一维数组。该数组的长度应该是outputs与代码中匹配的批量大小。每个元素的值应该是从 0 开始的目标类 ID。

这是一个例子。

假设您有批量大小B=2,并且每个数据实例都被赋予一个K=3类。

此外,假设神经网络的最后一层为批次中的两个实例输出以下原始 logits(softmax 之前的值)。这些 logits 和每个数据实例的真实标签如下所示。

                Logits (before softmax)
               Class 0  Class 1  Class 2    True class
               -------  -------  -------    ----------
Instance 0:        0.5      1.5      0.1             1
Instance 1:        2.2      1.3      1.7             2
Run Code Online (Sandbox Code Playgroud)

那么为了CrossEntropyLoss正确调用,需要两个变量:

  • input(B, K)包含 logit 值的形状
  • targetB包含真实类索引的形状

以下是如何正确使用CrossEntropyLoss上述值的方法。我用的是torch.__version__1.9.0。

                Logits (before softmax)
               Class 0  Class 1  Class 2    True class
               -------  -------  -------    ----------
Instance 0:        0.5      1.5      0.1             1
Instance 1:        2.2      1.3      1.7             2
Run Code Online (Sandbox Code Playgroud)

我猜您最初收到的错误是

RuntimeError: dimension out of range (expected to be in range of [-1, 0], but got 1)
Run Code Online (Sandbox Code Playgroud)

可能发生的原因是您正在尝试计算一个数据实例的交叉熵损失,其中目标被编码为 one-hot。您的数据可能是这样的:

                Logits (before softmax)
               Class 0  Class 1  Class 2  True class 0 True class 1 True class 2
               -------  -------  -------  ------------ ------------ ------------
Instance 0:        0.5      1.5      0.1             0            1            0
Run Code Online (Sandbox Code Playgroud)

这是表示上述数据的代码:

import torch

yhat = torch.Tensor([[0.5, 1.5, 0.1], [2.2, 1.3, 1.7]])
print(yhat)
# tensor([[0.5000, 1.5000, 0.1000],
#         [2.2000, 1.3000, 1.7000]])

y = torch.Tensor([1, 2]).to(torch.long)
print(y)
# tensor([1, 2])

loss = torch.nn.CrossEntropyLoss()
cel = loss(input=yhat, target=y)
print(cel)
# tensor(0.8393)
Run Code Online (Sandbox Code Playgroud)

此时,我收到以下错误:

---> 10 cel = loss(input=yhat, target=y)

IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
Run Code Online (Sandbox Code Playgroud)

在我看来,该错误消息是难以理解且无法采取行动的。

另请参阅类似的问题,但在 TensorFlow 中:

什么是逻辑?softmax 和 softmax_cross_entropy_with_logits 有什么区别?


Was*_*mad 8

根据您的代码:

probs_flat = probs.view(-1)
targets_flat = targets.view(-1)
return self.crossEntropy_loss(probs_flat, targets_flat)
Run Code Online (Sandbox Code Playgroud)

您正在给两个1d张量,nn.CrossEntropyLoss但根据文档,它期望:

Input: (N,C) where C = number of classes
Target: (N) where each value is 0 <= targets[i] <= C-1
Output: scalar. If reduce is False, then (N) instead.
Run Code Online (Sandbox Code Playgroud)

我相信这是您遇到问题的原因。

  • @Wasi您能解释错误消息的“预期范围[-1,0] ...”吗?我觉得有点神秘。。谢谢 (4认同)