3 optimization r armadillo rcpp
我试图在Rcpp中调用R函数.我在C++中使用Rcpp看到了一个调用R的optim函数的例子,但是我无法正确地修改它用于我的用例.基本上,目标函数取决于并且我想要优化它.optim()xyb
这是执行我想要的R代码:
example_r = function(b, x, y) {
phi = rnorm(length(x))
tar_val = (x ^ 2 + y ^ 2) * b * phi
objftn_r = function(beta, x, y) {
obj_val = (x ^ 2 + y ^ 2) * beta
return(obj_val)
}
b1 = optim(b, function(beta) {
sum((objftn_r(beta, x, y) - tar_val) ^ 2)
}, method = "BFGS")$par
result = (x ^ 2 + y ^ 2) * b1
return(b1)
}
Run Code Online (Sandbox Code Playgroud)
这是我尝试将其翻译为_RcppArmadillo:
#include <RcppArmadillo.h>
using namespace Rcpp;
// [[Rcpp::depends(RcppArmadillo)]]
arma::vec example_rcpp(arma::vec b, arma::vec x, arma::vec y){
arma::vec tar_val = pow(x,2)%b-pow(y,2);
return tar_val;
}
// [[Rcpp::export]]
arma::vec optim_rcpp(const arma::vec& init_val, arma::vec& x, arma::vec& y){
Rcpp::Environment stats("package:stats");
Rcpp::Function optim = stats["optim"];
Rcpp::List opt_results = optim(Rcpp::_["par"] = init_val,
Rcpp::_["fn"] = Rcpp::InternalFunction(&example_rcpp),
Rcpp::_["method"] = "BFGS");
arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);
return out;
}
Run Code Online (Sandbox Code Playgroud)
但是,此代码返回:
> optim_rcpp(1:3,2:4,3:5)
Error in optim_rcpp(1:3, 2:4, 3:5) : not compatible with requested type
Run Code Online (Sandbox Code Playgroud)
我不确定这里的错误是什么.
coa*_*ess 10
在开始之前,我有几点意见:
optim从- [R在C++比使用以非常不同的C++底层C++代码opt()从nlopt.因此,我已经清理了你的问题......但是,将来,这种情况很可能不会发生.
数据生成过程似乎分两步完成:首先,在example_r函数外部,然后在函数内部.
这应该简化,以便在优化功能之外完成.例如:
generate_data = function(n, x_mu = 0, y_mu = 1, beta = 1.5) {
x = rnorm(n, x_mu)
y = rnorm(n, y_mu)
phi = rnorm(length(x))
tar_val = (x ^ 2 + y ^ 2) * beta * phi
simulated_data = list(x = x, y = y, beta = beta, tar_val = tar_val)
return(simulated_data)
}
Run Code Online (Sandbox Code Playgroud)
optim目标函数必须在R中返回单个值,例如标量.在已发布的R代码下,实际上有两个功能被设计为按顺序充当目标函数,例如
objftn_r = function(beta, x, y) {
obj_val = (x ^ 2 + y ^ 2) * beta
return(obj_val)
}
b1 = optim(b, function(beta) {
sum((objftn_r(beta, x, y) - tar_val) ^ 2)
}, method = "BFGS")$par
Run Code Online (Sandbox Code Playgroud)
因此,该目标函数应重写为:
objftn_r = function(beta_hat, x, y, tar_val) {
# The predictions generate will be a vector
est_val = (x ^ 2 + y ^ 2) * beta_hat
# Here we apply sum of squares which changes it
# from a vector into a single "objective" value
# that optim can work with.
obj_val = sum( ( est_val - tar_val) ^ 2)
return(obj_val)
}
Run Code Online (Sandbox Code Playgroud)
从那里,调用应该对齐为:
sim_data = generate_data(10, 1, 2, .3)
b1 = optim(sim_data$beta, fn = objftn_r, method = "BFGS",
x = sim_data$x, y = sim_data$y, tar_val = sim_data$tar_val)$par
Run Code Online (Sandbox Code Playgroud)
修正了R代码的范围和行为后,让我们专注于将其转换为RcppArmadillo.
特别是,注意到,翻译后所定义的目标函数返回一个向量而不是标量到optim,这是不一个单一的值.另外值得关注的是tar_val目标函数中缺少参数.考虑到这一点,目标函数将转化为:
// changed function return type and
// the return type of first parameter
double obj_fun_rcpp(double& beta_hat,
arma::vec& x, arma::vec& y, arma::vec& tar_val){
// Changed from % to * as it is only appropriate if
// `beta_hat` is the same length as x and y.
// This is because it performs element-wise multiplication
// instead of a scalar multiplication on a vector
arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;
// Compute objective value
double obj_val = sum( pow( est_val - tar_val, 2) );
// Return a single value
return obj_val;
}
Run Code Online (Sandbox Code Playgroud)
现在,目标函数集,让我们解决RCPP调用放入[R为optim()从C++.在此函数中,必须显式提供函数的参数.所以x,y和tar_val必须存在的optim呼叫.因此,我们将最终得到:
// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
arma::vec& x, arma::vec& y, arma::vec& tar_val){
// Extract R's optim function
Rcpp::Environment stats("package:stats");
Rcpp::Function optim = stats["optim"];
// Call the optim function from R in C++
Rcpp::List opt_results = optim(Rcpp::_["par"] = init_val,
// Make sure this function is not exported!
Rcpp::_["fn"] = Rcpp::InternalFunction(&obj_fun_rcpp),
Rcpp::_["method"] = "BFGS",
// Pass in the other parameters as everything
// is scoped environmentally
Rcpp::_["x"] = x,
Rcpp::_["y"] = y,
Rcpp::_["tar_val"] = tar_val);
// Extract out the estimated parameter values
arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);
// Return estimated values
return out;
}
Run Code Online (Sandbox Code Playgroud)
完整功能的代码可以通过以下方式编写test_optim.cpp和编译sourceCpp():
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// changed function return type and
// the return type of first parameter
// DO NOT EXPORT THIS FUNCTION VIA RCPP ATTRIBUTES
double obj_fun_rcpp(double& beta_hat,
arma::vec& x, arma::vec& y, arma::vec& tar_val){
// Changed from % to * as it is only appropriate if
// `beta_hat` is the same length as x and y.
// This is because it performs element-wise multiplication
// instead of a scalar multiplication on a vector
arma::vec est_val = (pow(x, 2) - pow(y, 2)) * beta_hat;
// Compute objective value
double obj_val = sum( pow( est_val - tar_val, 2) );
// Return a single value
return obj_val;
}
// [[Rcpp::export]]
arma::vec optim_rcpp(double& init_val,
arma::vec& x, arma::vec& y, arma::vec& tar_val){
// Extract R's optim function
Rcpp::Environment stats("package:stats");
Rcpp::Function optim = stats["optim"];
// Call the optim function from R in C++
Rcpp::List opt_results = optim(Rcpp::_["par"] = init_val,
// Make sure this function is not exported!
Rcpp::_["fn"] = Rcpp::InternalFunction(&obj_fun_rcpp),
Rcpp::_["method"] = "BFGS",
// Pass in the other parameters as everything
// is scoped environmentally
Rcpp::_["x"] = x,
Rcpp::_["y"] = y,
Rcpp::_["tar_val"] = tar_val);
// Extract out the estimated parameter values
arma::vec out = Rcpp::as<arma::vec>(opt_results[0]);
// Return estimated values
return out;
}
Run Code Online (Sandbox Code Playgroud)
# Setup some values
beta = 2
x = 2:4
y = 3:5
# Set a seed for reproducibility
set.seed(111)
phi = rnorm(length(x))
tar_val = (x ^ 2 + y ^ 2) * beta * phi
optim_rcpp(beta, x, y, tar_val)
# [,1]
# [1,] 2.033273
Run Code Online (Sandbox Code Playgroud)
注意:如果您想避免返回大小为1 x1的矩阵,请使用double作为返回参数optim_rcpp并切换Rcpp::as<arma::vec>到Rcpp::as<double>