Aji*_*kya 5 object-detection computer-vision python-3.x deep-learning tensorflow
我指的是Google的Tensor-Flow对象检测API.我已经成功地训练和测试了这些物体.我的问题是在测试后我获得了输出图像,并在对象周围绘制了框,我如何获得这些框的csv坐标?可以在(https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb)上找到测试代码.
如果我看到帮助程序代码,它会将图像加载到numpy数组中:
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
Run Code Online (Sandbox Code Playgroud)
在检测中,它采用这个图像阵列并给出输出框,如下所示
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
Run Code Online (Sandbox Code Playgroud)
我想将这些绿色框的坐标存储在csv文件中.这是怎么做的?
boxes数组([ymin, xmin, ymax, xmax])中的坐标是标准化的.因此,您必须将它们与图像宽度/高度相乘才能获得原始值.
为此,您可以执行以下操作:
for box in np.squeeze(boxes):
box[0] = box[0] * heigh
box[1] = box[1] * width
box[2] = box[2] * height
box[3] = box[3] * width
Run Code Online (Sandbox Code Playgroud)
然后,您可以使用numpy.savetxt()方法将框保存到csv:
import numpy as np
np.savetxt('yourfile.csv', boxes, delimiter=',')
Run Code Online (Sandbox Code Playgroud)
正如评论中所指出的,上面的方法给出了一个盒子坐标列表.这是因为箱子张量保持每个检测区域的坐标.假设您使用0.5的默认置信度接受阈值,我可以快速解决以下问题:
for i, box in enumerate(np.squeeze(boxes)):
if(np.squeeze(scores)[i] > 0.5):
print("ymin={}, xmin={}, ymax={}, xmax{}".format(box[0]*height,box[1]*width,box[2]*height,box[3]*width))
Run Code Online (Sandbox Code Playgroud)
这应该打印四个值,而不是四个框.每个值代表边界框的一个角.
如果使用其他置信度接受阈值,则必须调整此值.也许你可以解析这个参数的模型配置.
要将坐标存储为CSV,您可以执行以下操作:
new_boxes = []
for i, box in enumerate(np.squeeze(boxes)):
if(np.squeeze(scores)[i] > 0.5):
new_boxes.append(box)
np.savetxt('yourfile.csv', new_boxes, delimiter=',')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3415 次 |
| 最近记录: |