SFC*_*SFC 3 python scikit-learn cross-validation
我试图运行以下代码:
from sklearn.model_selection import StratifiedKFold
X = ["hey", "join now", "hello", "join today", "join us now", "not today", "join this trial", " hey hey", " no", "hola", "bye", "join today", "no","join join"]
y = ["n", "r", "n", "r", "r", "n", "n", "n", "n", "r", "n", "n", "n", "r"]
skf = StratifiedKFold(n_splits=10)
for train, test in skf.split(X,y):
print("%s %s" % (train,test))
Run Code Online (Sandbox Code Playgroud)
但是我收到以下错误:
ValueError: n_splits=10 cannot be greater than the number of members in each class.
Run Code Online (Sandbox Code Playgroud)
我在这里看了scikit-learn错误:y中人口最少的类只有1个成员,但我仍然不确定我的代码有什么问题.
我的名单都有14个长度print(len(X))
print(len(y))
.
令我感到困惑的部分原因是我不确定在这种背景下members
定义了什么以及什么是定义class
.
问题:如何修复错误?什么是会员?什么是课程?(在此背景下)
分层意味着保持每个级别中每个级别的比例.因此,如果您的原始数据集有3个类别,比例分别为60%,20%和20%,那么分层将尝试在每个折叠中保持该比率.
在你的情况下,
X = ["hey", "join now", "hello", "join today", "join us now", "not today",
"join this trial", " hey hey", " no", "hola", "bye", "join today",
"no","join join"]
y = ["n", "r", "n", "r", "r", "n", "n", "n", "n", "y", "n", "n", "n", "y"]
Run Code Online (Sandbox Code Playgroud)
您总共有14个样本(成员)的分布:
class number of members percentage
'n' 9 64
'r' 3 22
'y' 2 14
Run Code Online (Sandbox Code Playgroud)
所以StratifiedKFold将尝试在每个折叠中保持这个比例.现在你指定了10倍(n_splits).所以这意味着在单个折叠中,对于'y'级来保持比例,至少2/10 = 0.2个成员.但是我们不能给少于1个成员(样本),所以这就是为什么它在那里抛出一个错误.
如果n_splits=10
你没有设置n_splits=2
,那么它就会有效,因为'y'的成员数量将是2/2 = 1.为了n_splits = 10
正常工作,你需要每个类至少有10个样本.
归档时间: |
|
查看次数: |
7484 次 |
最近记录: |