a.m*_*ssa 0 json scala apache-spark apache-spark-sql
我有一个像这样的数据框:
+--+--------+--------+----+-------------+------------------------------+
|id|name |lastname|age |timestamp |creditcards |
+--+--------+--------+----+-------------+------------------------------+
|1 |michel |blanc |35 |1496756626921|[[hr6,3569823], [ee3,1547869]]|
|2 |peter |barns |25 |1496756626551|[[ye8,4569872], [qe5,3485762]]|
+--+--------+--------+----+-------------+------------------------------+
Run Code Online (Sandbox Code Playgroud)
我的 df 的架构如下所示:
root
|-- id: string (nullable = true)
|-- name: string (nullable = true)
|-- lastname: string (nullable = true)
|-- age: string (nullable = true)
|-- timestamp: string (nullable = true)
|-- creditcards: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- id: string (nullable = true)
| | |-- number: string (nullable = true)
Run Code Online (Sandbox Code Playgroud)
我想将每一行转换为知道我的架构的 json 字符串。所以这个数据框将有一个包含 json 的列字符串。第一行应该是这样的:
{
"id":"1",
"name":"michel",
"lastname":"blanc",
"age":"35",
"timestamp":"1496756626921",
"creditcards":[
{
"id":"hr6",
"number":"3569823"
},
{
"id":"ee3",
"number":"1547869"
}
]
}
Run Code Online (Sandbox Code Playgroud)
数据框的第二行应该是这样的:
{
"id":"2",
"name":"peter",
"lastname":"barns",
"age":"25",
"timestamp":"1496756626551",
"creditcards":[
{
"id":"ye8",
"number":"4569872"
},
{
"id":"qe5",
"number":"3485762"
}
]
}
Run Code Online (Sandbox Code Playgroud)
我的目标不是将数据帧写入 json 文件。我的目标是将 df1 转换为第二个 df2,以便将 df2 的每个 json 行推送到 kafka 主题我有以下代码来创建数据帧:
val line1 = """{"id":"1","name":"michel","lastname":"blanc","age":"35","timestamp":"1496756626921","creditcards":[{"id":"hr6","number":"3569823"},{"id":"ee3","number":"1547869"}]}"""
val line2 = """{"id":"2","name":"peter","lastname":"barns","age":"25","timestamp":"1496756626551","creditcards":[{"id":"ye8","number":"4569872"}, {"id":"qe5","number":"3485762"}]}"""
val rdd = sc.parallelize(Seq(line1, line2))
val df = sqlContext.read.json(rdd)
df show false
df printSchema
Run Code Online (Sandbox Code Playgroud)
你有什么主意吗?
如果您需要的只是一个单列 DataFrame/Dataset,其中每个列值代表 JSON 中原始 DataFrame 的每一行,您可以简单地应用于toJSON您的 DataFrame,如下所示:
df.show
// +---+------------------------------+---+--------+------+-------------+
// |age|creditcards |id |lastname|name |timestamp |
// +---+------------------------------+---+--------+------+-------------+
// |35 |[[hr6,3569823], [ee3,1547869]]|1 |blanc |michel|1496756626921|
// |25 |[[ye8,4569872], [qe5,3485762]]|2 |barns |peter |1496756626551|
// +---+------------------------------+---+--------+------+-------------+
val dsJson = df.toJSON
// dsJson: org.apache.spark.sql.Dataset[String] = [value: string]
dsJson.show
// +--------------------------------------------------------------------------+
// |value |
// +--------------------------------------------------------------------------+
// |{"age":"35","creditcards":[{"id":"hr6","number":"3569823"},{"id":"ee3",...|
// |{"age":"25","creditcards":[{"id":"ye8","number":"4569872"},{"id":"qe5",...|
// +--------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
[更新]
要添加name为附加列,您可以使用以下命令从 JSON 列中提取它from_json:
val result = dsJson.withColumn("name", from_json($"value", df.schema)("name"))
result.show
// +--------------------+------+
// | value| name|
// +--------------------+------+
// |{"age":"35","cred...|michel|
// |{"age":"25","cred...| peter|
// +--------------------+------+
Run Code Online (Sandbox Code Playgroud)