Gin*_*ger 7 python numpy permutation choice scipy
我正在使用np.random.choice进行采样而无需替换.
我希望以下代码选择0 50%的时间,1 30%的时间和2 20%的时间.
import numpy as np
draws = []
for _ in range(10000):
draw = np.random.choice(3, size=2, replace=False, p=[0.5, 0.3, 0.2])
draws.append(draw)
result = np.r_[draws]
Run Code Online (Sandbox Code Playgroud)
如何正确选择参数以np.random.choice
获得我想要的结果?
我想要的数字代表事件在第一或第二位置被抽出的概率.
print(np.any(result==0, axis=1).mean()) # 0.83, want 0.8
print(np.any(result==1, axis=1).mean()) # 0.68, want 0.7
print(np.any(result==2, axis=1).mean()) # 0.47, want 0.5
Run Code Online (Sandbox Code Playgroud)
我对这个问题给出两种解释。我更喜欢一种(“Timeless”),另一种我认为技术上有效但较差(“Naive”)
给定概率x, y, z
,该方法计算x', y', z'
出如果我们独立绘制两次并丢弃所有相等的对,则 的频率0, 1, 2
为x, y, z
。
这给出了两次试验的正确总频率,并且具有简单和永恒的额外好处,因为第一次和第二次试验是等效的。
为了保持这一点,我们必须有
(x'y' + x'z') / [2 (x'y' + x'z' + y'z')] = x
(x'y' + y'z') / [2 (x'y' + x'z' + y'z')] = y (1)
(y'z' + x'z') / [2 (x'y' + x'z' + y'z')] = z
Run Code Online (Sandbox Code Playgroud)
如果我们添加其中两个并减去第三个,我们会得到
x'y' / (x'y' + x'z' + y'z') = x + y - z = 1 - 2 z
x'z' / (x'y' + x'z' + y'z') = x - y + z = 1 - 2 y (2)
y'z' / (x'y' + x'z' + y'z') = -x + y + z = 1 - 2 x
Run Code Online (Sandbox Code Playgroud)
乘以其中的 2,然后除以三分之一
x'^2 / (x'y' + x'z' + y'z') = (1 - 2 z) (1 - 2 y) / (1 - 2 x)
y'^2 / (x'y' + x'z' + y'z') = (1 - 2 z) (1 - 2 x) / (1 - 2 y) (3)
z'^2 / (x'y' + x'z' + y'z') = (1 - 2 x) (1 - 2 y) / (1 - 2 z)
Run Code Online (Sandbox Code Playgroud)
因此,直到一个常数因子
x' ~ sqrt[(1 - 2 z) (1 - 2 y) / (1 - 2 x)]
y' ~ sqrt[(1 - 2 z) (1 - 2 x) / (1 - 2 y)] (4)
z' ~ sqrt[(1 - 2 x) (1 - 2 y) / (1 - 2 z)]
Run Code Online (Sandbox Code Playgroud)
因为我们知道x', y', z'
总和必须为一,这足以解决。
但是:我们实际上不需要完全解决x', y', z'
. 由于我们只对不等对感兴趣,因此我们需要的只是条件概率x'y' / (x'y' + x'z' + y'z')
、x'z' / (x'y' + x'z' + y'z')
和y'z' / (x'y' + x'z' + y'z')
。我们可以使用方程(2)计算这些。
然后,我们将它们中的每一个减半以获得有序对的概率,并用这些概率从六个合法对中进行抽取。
这是基于(在我看来是任意的)假设,在第一次以概率 抽奖之后x', y', z'
,第二次抽奖必须有条件概率0, y' / (y'+z'), z' / (y'+z')
如果第一个是0
x' / (x'+z'), 0, z' / (x'+z')
如果第一个是1
并且概率x' / (x'+y'), y' / (x'+y'), 0)
如果第一个是2
。
这样做的缺点是,据我所知,没有简单的封闭式解决方案,而且第二次和第一次抽奖有很大不同。
优点是可以直接使用np.random.choice
;然而,这太慢了,以至于在下面的实现中我给出了一个解决方法来避免这个函数。
经过一些代数计算后,我们发现:
1/x' - x' = c (1 - 2x)
1/y' - y' = c (1 - 2y)
1/z' - z' = c (1 - 2z)
Run Code Online (Sandbox Code Playgroud)
在哪里c = 1/x' + 1/y' + 1/z' - 1
。我只能用数值方法解决这个问题。
这是实现。
import numpy as np
from scipy import optimize
def f_pairs(n, p):
p = np.asanyarray(p)
p /= p.sum()
assert np.all(p <= 0.5)
pp = 1 - 2*p
# the following two lines show how to compute x', y', z'
# pp = np.sqrt(pp.prod()) / pp
# pp /= pp.sum()
# now pp contains x', y', z'
i, j = np.triu_indices(3, 1)
i, j = i[::-1], j[::-1]
pairs = np.c_[np.r_[i, j], np.r_[j, i]]
pp6 = np.r_[pp/2, pp/2]
return pairs[np.random.choice(6, size=(n,), replace=True, p=pp6)]
def f_opt(n, p):
p = np.asanyarray(p)
p /= p.sum()
pp = 1 - 2*p
def target(l):
lp2 = l*pp/2
return (np.sqrt(1 + lp2**2) - lp2).sum() - 1
l = optimize.root(target, 8).x
lp2 = l*pp/2
pp = np.sqrt(1 + lp2**2) - lp2
fst = np.random.choice(3, size=(n,), replace=True, p=pp)
snd = (
(np.random.random((n,)) < (1 / (1 + (pp[(fst+1)%3] / pp[(fst-1)%3]))))
+ fst + 1) % 3
return np.c_[fst, snd]
def f_naive(n, p):
p = np.asanyarray(p)
p /= p.sum()
pp = 1 - 2*p
def target(l):
lp2 = l*pp/2
return (np.sqrt(1 + lp2**2) - lp2).sum() - 1
l = optimize.root(target, 8).x
lp2 = l*pp/2
pp = np.sqrt(1 + lp2**2) - lp2
return np.array([np.random.choice(3, (2,), replace=False, p=pp)
for _ in range(n)])
def check_sol(p, sol):
N = len(sol)
print("Frequencies [value: observed, desired]")
c1 = np.bincount(sol[:, 0], minlength=3) / N
print(f"1st column: 0: {c1[0]:8.6f} {p[0]:8.6f} 1: {c1[1]:8.6f} {p[1]:8.6f} 2: {c1[2]:8.6f} {p[2]:8.6f}")
c2 = np.bincount(sol[:, 1], minlength=3) / N
print(f"2nd column: 0: {c2[0]:8.6f} {p[0]:8.6f} 1: {c2[1]:8.6f} {p[1]:8.6f} 2: {c2[2]:8.6f} {p[2]:8.6f}")
c = c1 + c2
print(f"1st or 2nd: 0: {c[0]:8.6f} {2*p[0]:8.6f} 1: {c[1]:8.6f} {2*p[1]:8.6f} 2: {c[2]:8.6f} {2*p[2]:8.6f}")
print()
print("2nd column conditioned on 1st column [value 1st: val / prob 2nd]")
for i in range(3):
idx = np.flatnonzero(sol[:, 0]==i)
c = np.bincount(sol[idx, 1], minlength=3) / len(idx)
print(f"{i}: 0 / {c[0]:8.6f} 1 / {c[1]:8.6f} 2 / {c[2]:8.6f}")
print()
# demo
p = 0.4, 0.35, 0.25
n = 1000000
print("Method: Naive")
check_sol(p, f_naive(n//10, p))
print("Method: naive, optimized")
check_sol(p, f_opt(n, p))
print("Method: Timeless")
check_sol(p, f_pairs(n, p))
Run Code Online (Sandbox Code Playgroud)
示例输出:
Method: Naive
Frequencies [value: observed, desired]
1st column: 0: 0.449330 0.400000 1: 0.334180 0.350000 2: 0.216490 0.250000
2nd column: 0: 0.349050 0.400000 1: 0.366640 0.350000 2: 0.284310 0.250000
1st or 2nd: 0: 0.798380 0.800000 1: 0.700820 0.700000 2: 0.500800 0.500000
2nd column conditioned on 1st column [value 1st: val / prob 2nd]
0: 0 / 0.000000 1 / 0.608128 2 / 0.391872
1: 0 / 0.676133 1 / 0.000000 2 / 0.323867
2: 0 / 0.568617 1 / 0.431383 2 / 0.000000
Method: naive, optimized
Frequencies [value: observed, desired]
1st column: 0: 0.450606 0.400000 1: 0.334881 0.350000 2: 0.214513 0.250000
2nd column: 0: 0.349624 0.400000 1: 0.365469 0.350000 2: 0.284907 0.250000
1st or 2nd: 0: 0.800230 0.800000 1: 0.700350 0.700000 2: 0.499420 0.500000
2nd column conditioned on 1st column [value 1st: val / prob 2nd]
0: 0 / 0.000000 1 / 0.608132 2 / 0.391868
1: 0 / 0.676515 1 / 0.000000 2 / 0.323485
2: 0 / 0.573727 1 / 0.426273 2 / 0.000000
Method: Timeless
Frequencies [value: observed, desired]
1st column: 0: 0.400756 0.400000 1: 0.349099 0.350000 2: 0.250145 0.250000
2nd column: 0: 0.399128 0.400000 1: 0.351298 0.350000 2: 0.249574 0.250000
1st or 2nd: 0: 0.799884 0.800000 1: 0.700397 0.700000 2: 0.499719 0.500000
2nd column conditioned on 1st column [value 1st: val / prob 2nd]
0: 0 / 0.000000 1 / 0.625747 2 / 0.374253
1: 0 / 0.714723 1 / 0.000000 2 / 0.285277
2: 0 / 0.598129 1 / 0.401871 2 / 0.000000
Run Code Online (Sandbox Code Playgroud)