Unnest(爆炸)熊猫系列

Bra*_*mon 15 python dataframe pandas

我有:

df = pd.DataFrame({'col1': ['asdf', 'xy', 'q'], 'col2': [1, 2, 3]})

   col1  col2
0  asdf     1
1    xy     2
2     q     3
Run Code Online (Sandbox Code Playgroud)

我想从字符串中col1取出每个字母的"组合产品" ,每个元素都在int中col2.即:

  col1  col2
0    a    1
1    s    1
2    d    1
3    f    1
4    x    2
5    y    2
6    q    3
Run Code Online (Sandbox Code Playgroud)

目前的方法:

from itertools import product

pieces = []
for _, s in df.iterrows():
    letters = list(s.col1)
    prods = list(product(letters, [s.col2]))
    pieces.append(pd.DataFrame(prods))

pd.concat(pieces)
Run Code Online (Sandbox Code Playgroud)

任何更有效的解决方法?

cs9*_*s95 16

使用list+ str.joinnp.repeat-

pd.DataFrame(
{
     'col1' : list(''.join(df.col1)), 
     'col2' : df.col2.values.repeat(df.col1.str.len(), axis=0)
})

  col1  col2
0    a     1
1    s     1
2    d     1
3    f     1
4    x     2
5    y     2
6    q     3
Run Code Online (Sandbox Code Playgroud)

可以轻松实现任意数量列的通用解决方案,而无需对解决方案进行太多更改 -

i = list(''.join(df.col1))
j = df.drop('col1', 1).values.repeat(df.col1.str.len(), axis=0)

df = pd.DataFrame(j, columns=df.columns.difference(['col1']))
df.insert(0, 'col1', i)

df

  col1 col2
0    a    1
1    s    1
2    d    1
3    f    1
4    x    2
5    y    2
6    q    3
Run Code Online (Sandbox Code Playgroud)

性能

df = pd.concat([df] * 100000, ignore_index=True)
Run Code Online (Sandbox Code Playgroud)

# MaxU's solution

%%timeit
df.col1.str.extractall(r'(.)') \
           .reset_index(level=1, drop=True) \
           .join(df['col2']) \
           .reset_index(drop=True)

1 loop, best of 3: 1.98 s per loop
Run Code Online (Sandbox Code Playgroud)

# piRSquared's solution

%%timeit
pd.DataFrame(
     [[x] + b for a, *b in df.values for x in a],
     columns=df.columns
)

1 loop, best of 3: 1.68 s per loop
Run Code Online (Sandbox Code Playgroud)

# Wen's solution

%%timeit
v = df.col1.apply(list)
pd.DataFrame({'col1':np.concatenate(v.values),'col2':df.col2.repeat(v.apply(len))})

1 loop, best of 3: 835 ms per loop
Run Code Online (Sandbox Code Playgroud)

# Alexander's solution

%%timeit
pd.DataFrame([(letter, i) 
              for letters, i in zip(df['col1'], df['col2']) 
              for letter in letters],
             columns=df.columns)

1 loop, best of 3: 316 ms per loop
Run Code Online (Sandbox Code Playgroud)

%%timeit
pd.DataFrame(
{
     'col1' : list(''.join(df.col1)), 
     'col2' : df.col2.values.repeat(df.col1.str.len(), axis=0)
})

10 loops, best of 3: 124 ms per loop
Run Code Online (Sandbox Code Playgroud)

我试过计时Vaishali的,但这个数据集花了太长时间.


Ale*_*der 8

pd.DataFrame([(letter, i) 
              for letters, i in zip(df['col1'], df['col2']) 
              for letter in letters],
             columns=df.columns)
Run Code Online (Sandbox Code Playgroud)


Max*_*axU 7

In [86]: df.col1.str.extractall(r'(.)') \
           .reset_index(level=1, drop=True) \
           .join(df['col2']) \
           .reset_index(drop=True)
Out[86]:
   0  col2
0  a     1
1  s     1
2  d     1
3  f     1
4  x     2
5  y     2
6  q     3
Run Code Online (Sandbox Code Playgroud)


WeN*_*Ben 7

list:-) 欺骗

df.col1=df.col1.apply(list)
df
Out[489]: 
           col1  col2
0  [a, s, d, f]     1
1        [x, y]     2
2           [q]     3
pd.DataFrame({'col1':np.concatenate(df.col1.values),'col2':df.col2.repeat(df.col1.apply(len))})
Out[490]: 
  col1  col2
0    a     1
0    s     1
0    d     1
0    f     1
1    x     2
1    y     2
2    q     3
Run Code Online (Sandbox Code Playgroud)


Vai*_*ali 7

多一个:)

df.set_index('col2').col1.apply(lambda x: pd.Series(list(x))).stack()\
.reset_index(1,drop = True).reset_index(name = 'col1')

    col2    col1
0   1       a
1   1       s
2   1       d
3   1       f
4   2       x
5   2       y
6   3       q
Run Code Online (Sandbox Code Playgroud)