我有5个x,y数据集,我正在使用R的plotly.
以下是数据:
set.seed(1)
df <- do.call(rbind,lapply(seq(1,20,4),function(i) data.frame(x=rnorm(50,mean=i,sd=1),y=rnorm(50,mean=i,sd=1),cluster=i)))
Run Code Online (Sandbox Code Playgroud)
这是他们的plotly散点图:
library(plotly)
clusters.plot <- plot_ly(marker=list(size=10),type='scatter',mode="markers",x=~df$x,y=~df$y,color=~df$cluster,data=df) %>% hide_colorbar() %>% layout(xaxis=list(title="X",zeroline=F),yaxis=list(title="Y",zeroline=F))
Run Code Online (Sandbox Code Playgroud)
然后,按照@Marco Sandri的回答,我使用以下代码添加限制这些集群的多边形:
多边形代码:
library(data.table)
library(grDevices)
splinesPolygon <- function(xy,vertices,k=3, ...)
{
# Assert: xy is an n by 2 matrix with n >= k.
# Wrap k vertices around each end.
n <- dim(xy)[1]
if (k >= 1) {
data <- rbind(xy[(n-k+1):n,], xy, xy[1:k, ])
} else {
data <- xy
}
# Spline the x and y coordinates.
data.spline <- spline(1:(n+2*k), data[,1], n=vertices, ...)
x <- data.spline$x
x1 <- data.spline$y
x2 <- spline(1:(n+2*k), data[,2], n=vertices, ...)$y
# Retain only the middle part.
cbind(x1, x2)[k < x & x <= n+k, ]
}
clustersPolygon <- function(df)
{
dt <- data.table::data.table(df)
hull <- dt[,.SD[chull(x,y)]]
spline.hull <- splinesPolygon(cbind(hull$x,hull$y),100)
return(data.frame(x=spline.hull[,1],y=spline.hull[,2],stringsAsFactors=F))
}
library(dplyr)
polygons.df <- do.call(rbind,lapply(unique(df$cluster),function(l)
clustersPolygon(df=dplyr::filter(df,cluster == l)) %>%
dplyr::rename(polygon.x=x,polygon.y=y) %>%
dplyr::mutate(cluster=l)))
Run Code Online (Sandbox Code Playgroud)
现在添加多边形:
clusters <- unique(df$cluster)
for(l in clusters) clusters.plot <- clusters.plot %>%
add_polygons(x=dplyr::filter(polygons.df,cluster == l)$polygon.x,
y=dplyr::filter(polygons.df,cluster == l)$polygon.y,
line=list(width=2,color="black"),
fillcolor='transparent', inherit = FALSE)
Run Code Online (Sandbox Code Playgroud)
这使:
虽然这很有用,但遗憾的是它消除了hoverinfo添加多边形之前存在的现象,现在只是每个多边形的轨迹.
改变inherit来自FALSE于TRUE与我写的错误结果在该职位.所以我的问题是如何在不改变hoverinfo原始图的情况下添加多边形.
我认为这里的部分问题是当你开始混合和匹配跟踪类型时,colorbarin plotly有一些奇怪的行为和副作用.
解决此问题的最简单方法(由于您按群集着色而不是连续变量似乎是合适的)是将聚类列的类更改为带表达式的有序因子df$cluster <- ordered(as.factor(df$cluster)).(我相信这也可能是一个dplyr mutate声明.)
library(data.table)
library(grDevices)
library(dplyr)
library(plotly)
## Function Definitions
splinesPolygon <- function(xy,vertices,k=3, ...) {
# Assert: xy is an n by 2 matrix with n >= k.
# Wrap k vertices around each end.
n <- dim(xy)[1]
if (k >= 1) {
data <- rbind(xy[(n-k+1):n,], xy, xy[1:k, ])
} else {
data <- xy
}
# Spline the x and y coordinates.
data.spline <- spline(1:(n+2*k), data[,1], n=vertices, ...)
x <- data.spline$x
x1 <- data.spline$y
x2 <- spline(1:(n+2*k), data[,2], n=vertices, ...)$y
# Retain only the middle part.
cbind(x1, x2)[k < x & x <= n+k, ]
}
clustersPolygon <- function(df) {
dt <- data.table::data.table(df)
hull <- dt[,.SD[chull(x,y)]]
spline.hull <- splinesPolygon(cbind(hull$x,hull$y),100)
return(data.frame(x=spline.hull[,1],y=spline.hull[,2],stringsAsFactors=F))
}
Run Code Online (Sandbox Code Playgroud)
这里的一个关键区别是将您的集群定义为有序因子,以防止它被视为将调用colorbar古怪的连续变量.
set.seed(1)
df <- do.call(rbind,lapply(seq(1,20,4),function(i) data.frame(x=rnorm(50,mean=i,sd=1),y=rnorm(50,mean=i,sd=1),cluster=i)))
## Critical Step here: Make cluster an ordered factor so it will
## be plotted with the sequential viridis scale, but will not
## be treated as a continuous spectrum that gets the colorbar involved
df$cluster <- ordered(as.factor(df$cluster))
## Make hull polygons
polygons.df <- do.call(rbind,lapply(unique(df$cluster),function(l) clustersPolygon(df=dplyr::filter(df,cluster == l)) %>% dplyr::rename(polygon.x=x,polygon.y=y) %>% dplyr::mutate(cluster=l)))
clusters <- unique(df$cluster)
clustersPolygon(df=dplyr::filter(df,cluster == l)) %>% dplyr::rename(polygon.x=x,polygon.y=y) %>% dplyr::mutate(cluster=l)))
Run Code Online (Sandbox Code Playgroud)
plotly对象这里大致相同,但首先初始化一个空的绘图对象,然后在原始数据点之前添加船体多边形.
## Initialize an empty plotly object so that the hulls can be added first
clusters.plot <- plot_ly()
## Add hull polygons sequentially
for(l in clusters) clusters.plot <- clusters.plot %>%
add_polygons(x=dplyr::filter(polygons.df,cluster == l)$polygon.x,
y=dplyr::filter(polygons.df,cluster == l)$polygon.y,
name = paste0("Cluster ",l),
line=list(width=2,color="black"),
fillcolor='transparent',
hoverinfo = "none",
showlegend = FALSE,
inherit = FALSE)
## Add the raw data trace
clusters.plot <- clusters.plot %>%
add_trace(data=df, x= ~x,y= ~y,color= ~cluster,
type='scatter',mode="markers",
marker=list(size=10)) %>%
layout(xaxis=list(title="X",
zeroline=F),
yaxis=list(title="Y",
zeroline=F))
## Print the output
clusters.plot
Run Code Online (Sandbox Code Playgroud)