Abe*_*e.Z 1 machine-learning python-3.x scikit-learn data-science
我正在使用scikit-learn的RandomizedSearchCV函数.一些学术论文声称,与整个网格搜索相比,随机搜索可以提供"足够好"的结果,但可以节省大量时间.
令人惊讶的是,有一次,RandomizedSearchCV提供了比GridSearchCV更好的结果.我认为GridSearchCV是穷举的,所以结果必须比RandomizedSearchCV更好,假设他们搜索同一个网格.
对于相同的数据集和大多数相同的设置,GridsearchCV返回了以下结果:
最佳cv精度:0.7642857142857142
测试集得分:0.725
最佳参数:'C':0.02
RandomizedSearchCV返回以下结果:最佳cv准确度:0.7428571428571429
测试集得分:0.7333333333333333
最佳参数:'C':0.008
对我来说,0.733的测试分数优于0.725,并且RandomizedSearchCV的测试分数和训练分数之间的差异较小,据我所知,这意味着过度拟合.
那么为什么GridSearchCV会让我的结果更糟?
GridSearchCV代码:
def linear_SVC(x, y, param, kfold):
param_grid = {'C':param}
k = KFold(n_splits=kfold, shuffle=True, random_state=0)
grid = GridSearchCV(LinearSVC(), param_grid=param_grid, cv=k, n_jobs=4, verbose=1)
return grid.fit(x, y)
#high C means more chance of overfitting
start = timer()
param = [i/1000 for i in range(1,1000)]
param1 = [i for i in range(1,101)]
param.extend(param1)
#progress = progressbar.bar.ProgressBar()
clf = linear_SVC(x=x_train, y=y_train, param=param, kfold=3)
print('LinearSVC:')
print('Best cv accuracy: {}' .format(clf.best_score_))
print('Test set score: {}' .format(clf.score(x_test, y_test)))
print('Best parameters: {}' .format(clf.best_params_))
print()
duration = timer() - start
print('time to run: {}' .format(duration))
Run Code Online (Sandbox Code Playgroud)
RandomizedSearchCV代码:
from sklearn.model_selection import RandomizedSearchCV
def Linear_SVC_Rand(x, y, param, kfold, n):
param_grid = {'C':param}
k = StratifiedKFold(n_splits=kfold, shuffle=True, random_state=0)
randsearch = RandomizedSearchCV(LinearSVC(), param_distributions=param_grid, cv=k, n_jobs=4,
verbose=1, n_iter=n)
return randsearch.fit(x, y)
start = timer()
param = [i/1000 for i in range(1,1000)]
param1 = [i for i in range(1,101)]
param.extend(param1)
#progress = progressbar.bar.ProgressBar()
clf = Linear_SVC_Rand(x=x_train, y=y_train, param=param, kfold=3, n=100)
print('LinearSVC:')
print('Best cv accuracy: {}' .format(clf.best_score_))
print('Test set score: {}' .format(clf.score(x_test, y_test)))
print('Best parameters: {}' .format(clf.best_params_))
print()
duration = timer() - start
print('time to run: {}' .format(duration))
Run Code Online (Sandbox Code Playgroud)
首先,尝试理解这一点:https: //stats.stackexchange.com/questions/49540/understanding-stratified-cross-validation
所以应该知道StratifiedKFold比KFold更好.
在GridSearchCV和RandomizedSearchCV中使用StratifiedKFold.并确保设置" shuffle = False
"并且不要使用" random_state
"参数.这样做,您正在使用的数据集不会被洗牌,因此每次训练时您的结果都不会改变.你可能得到你期望的.
GridSearchCV代码:
def linear_SVC(x, y, param, kfold):
param_grid = {'C':param}
k = StratifiedKFold(n_splits=kfold)
grid = GridSearchCV(LinearSVC(), param_grid=param_grid, cv=k, n_jobs=4, verbose=1)
return grid.fit(x, y)
Run Code Online (Sandbox Code Playgroud)
RandomizedSearchCV代码:
def Linear_SVC_Rand(x, y, param, kfold, n):
param_grid = {'C':param}
k = StratifiedKFold(n_splits=kfold)
randsearch = RandomizedSearchCV(LinearSVC(), param_distributions=param_grid, cv=k, n_jobs=4,
verbose=1, n_iter=n)
return randsearch.fit(x, y)
Run Code Online (Sandbox Code Playgroud)