Keras中的自定义加权损失功能用于称量每个元素

Nip*_*tra 13 python keras tensorflow loss-function

我正在尝试创建一个简单的加权损失函数.

比方说,我的输入尺寸为100*5,输出尺寸也为100*5.我也有一个相同尺寸的重量矩阵.

类似于以下内容:

import numpy as np
train_X = np.random.randn(100, 5)
train_Y = np.random.randn(100, 5)*0.01 + train_X

weights = np.random.randn(*train_X.shape)
Run Code Online (Sandbox Code Playgroud)

定义自定义丢失功能

def custom_loss_1(y_true, y_pred):
    return K.mean(K.abs(y_true-y_pred)*weights)
Run Code Online (Sandbox Code Playgroud)

定义模型

from keras.layers import Dense, Input
from keras import Model
import keras.backend as K

input_layer = Input(shape=(5,))
out = Dense(5)(input_layer)
model = Model(input_layer, out)
Run Code Online (Sandbox Code Playgroud)

使用现有指标进行测试工作正常

model.compile('adam','mean_absolute_error')
model.fit(train_X, train_Y, epochs=1)
Run Code Online (Sandbox Code Playgroud)

使用我们的自定义丢失功能进行测试不起作用

model.compile('adam',custom_loss_1)
model.fit(train_X, train_Y, epochs=10)
Run Code Online (Sandbox Code Playgroud)

它给出了以下堆栈跟踪:

InvalidArgumentError (see above for traceback): Incompatible shapes: [32,5] vs. [100,5]
 [[Node: loss_9/dense_8_loss/mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](loss_9/dense_8_loss/Abs, loss_9/dense_8_loss/mul/y)]]
Run Code Online (Sandbox Code Playgroud)

32号来自哪里?

使用权重测试损失函数作为Keras张量

def custom_loss_2(y_true, y_pred):
    return K.mean(K.abs(y_true-y_pred)*K.ones_like(y_true))
Run Code Online (Sandbox Code Playgroud)

这个功能似乎做了工作.因此,可能表明作为权重矩阵的Keras张量可以起作用.所以,我创建了另一个版本的损失函数.

损失函数尝试3

from functools import partial

def custom_loss_3(y_true, y_pred, weights):
    return K.mean(K.abs(y_true-y_pred)*K.variable(weights, dtype=y_true.dtype))

cl3 = partial(custom_loss_3, weights=weights)  
Run Code Online (Sandbox Code Playgroud)

使用cl3拟合数据会产生与上述相同的错误.

InvalidArgumentError (see above for traceback): Incompatible shapes: [32,5] vs. [100,5]
     [[Node: loss_11/dense_8_loss/mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](loss_11/dense_8_loss/Abs, loss_11/dense_8_loss/Variable/read)]]
Run Code Online (Sandbox Code Playgroud)

我想知道我错过了什么!我本可以在Keras中使用sample_weight的概念; 但后来我不得不重塑我的输入到3d矢量.

我认为这个自定义丢失函数应该是微不足道的.

rvi*_*nas 12

model.fit批量大小是默认32,这就是这个数字的来源.这是发生了什么:

  • custom_loss_1张量K.abs(y_true-y_pred)有形状(batch_size=32, 5),而numpy阵列weights有形状(100, 5).这是无效的乘法,因为维度不一致并且无法应用广播.

  • custom_loss_2这个问题中不存在,因为你将2个张量相乘,形状相同(batch_size=32, 5).

  • custom_loss_3问题是相同custom_loss_1的,因为转换weights成Keras变量不改变它们的形状.


更新:似乎你想给每个训练样本中的每个元素赋予不同的权重,因此weights数组应该(100, 5)确实具有形状.在这种情况下,我会将权重数组输入到模型中,然后在损失函数中使用此张量:

import numpy as np
from keras.layers import Dense, Input
from keras import Model
import keras.backend as K
from functools import partial


def custom_loss_4(y_true, y_pred, weights):
    return K.mean(K.abs(y_true - y_pred) * weights)


train_X = np.random.randn(100, 5)
train_Y = np.random.randn(100, 5) * 0.01 + train_X
weights = np.random.randn(*train_X.shape)

input_layer = Input(shape=(5,))
weights_tensor = Input(shape=(5,))
out = Dense(5)(input_layer)
cl4 = partial(custom_loss_4, weights=weights_tensor)
model = Model([input_layer, weights_tensor], out)
model.compile('adam', cl4)
model.fit(x=[train_X, weights], y=train_Y, epochs=10)
Run Code Online (Sandbox Code Playgroud)