dplyr:在变异本身中使用由mutate创建的列

bre*_*usn 1 r dplyr

我有一个看起来像这样的数据框:

> df
# A tibble: 5,427 x 3
    cond desired   inc
   <chr>   <dbl> <dbl>
 1  <NA>       0     0
 2  <NA>       5     5
 3     X      10     5
 4     X       7     7
 5  <NA>      16    16
 6  <NA>      21     5
 7  <NA>      26     5
 8  <NA>      31     5
 9     X      37     6
10  <NA>       5     5
Run Code Online (Sandbox Code Playgroud)

这已包括我想要的输出.我想要做的是总结值inc,但如果在前一行Xcond列中有一个,则重置总和.因此,例如在行中,9desired从前一行(31)获取inc-value并从行9(6)中添加-value,这将得到37.而在行中5我只需要使用inc-value因为cond-column前一行是X.我使用循环解决了这个问题,但我想使用矢量化解决方案.到目前为止我得到了这个:

df$test <- 0
df <- df %>% mutate(test = ifelse(is.na(lag(df$cond)), lag(test) + inc, inc))
Run Code Online (Sandbox Code Playgroud)

如果我运行第二行,一旦得到这个:

> df
# A tibble: 5,427 x 4
    cond desired   inc  test
   <chr>   <dbl> <dbl> <dbl>
 1  <NA>       0     0    NA
 2  <NA>       5     5     5
 3     X      10     5     5
 4     X       7     7     7
 5  <NA>      16    16    16
 6  <NA>      21     5     5
 7  <NA>      26     5     5
 8  <NA>      31     5     5
 9     X      37     6     6
10  <NA>       5     5     5
Run Code Online (Sandbox Code Playgroud)

第二次运行后,它看起来像这样:

> df
# A tibble: 5,427 x 4
    cond desired   inc  test
   <chr>   <dbl> <dbl> <dbl>
 1  <NA>       0     0    NA
 2  <NA>       5     5    NA
 3     X      10     5    10
 4     X       7     7     7
 5  <NA>      16    16    16
 6  <NA>      21     5    21
 7  <NA>      26     5    10
 8  <NA>      31     5    10
 9     X      37     6    11
10  <NA>       5     5     5
# ... with 5,417 more rows
Run Code Online (Sandbox Code Playgroud)

第三次:

> df
# A tibble: 5,427 x 4
    cond desired   inc  test
   <chr>   <dbl> <dbl> <dbl>
 1  <NA>       0     0    NA
 2  <NA>       5     5    NA
 3     X      10     5    NA
 4     X       7     7     7
 5  <NA>      16    16    16
 6  <NA>      21     5    21
 7  <NA>      26     5    26
 8  <NA>      31     5    15
 9     X      37     6    16
10  <NA>       5     5     5
Run Code Online (Sandbox Code Playgroud)

然后,第五次之后:

> df
# A tibble: 5,427 x 4
    cond desired   inc  test
   <chr>   <dbl> <dbl> <dbl>
 1  <NA>       0     0    NA
 2  <NA>       5     5    NA
 3     X      10     5    NA
 4     X       7     7     7
 5  <NA>      16    16    16
 6  <NA>      21     5    21
 7  <NA>      26     5    26
 8  <NA>      31     5    31
 9     X      37     6    37
10  <NA>       5     5     5
Run Code Online (Sandbox Code Playgroud)

我正在使用我在mutate-command本身中使用mutate创建的列,我猜这会导致此行为/问题.有没有办法达到我想要的结果?提前致谢!

数据帧:

structure(list(cond = c(NA, NA, "X", "X", NA, NA, NA, NA, "X", 
NA, NA, NA, NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, "X", 
NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, "X", NA, NA, "X", 
NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, "X", NA, 
NA, NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, 
NA, "X", NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, 
NA, NA, NA, "X", NA, NA, NA, "X", NA, NA, NA, NA, "X", NA, NA, 
NA, NA, NA, NA, NA, NA, "X", NA, NA, "X", NA, NA, NA, NA, "X", 
NA, NA, NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, 
NA, "X", NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, "X", NA, NA, 
NA, NA, NA, NA, NA, "X", NA, NA, NA, "X", "X", NA, NA, NA, NA, 
NA, NA, NA, NA, "X", "X", NA, "X", NA, NA, NA, NA, NA, NA, NA, 
NA, "X", NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, "X", 
NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, "X", NA, NA, NA, NA, 
"X", NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, 
"X", NA, NA, NA, NA, NA, NA, "X", NA, NA, NA, NA, "X", NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, "X", NA, "X", 
NA, "X", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, "X", NA, NA, NA), desired = c(0, 5, 10, 7, 16, 21, 26, 
31, 37, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 5, 10, 15, 20, 
30, 7, 15, 21, 25, 40, 45, 55, 12, 20, 25, 30, 35, 40, 45, 50, 
55, 60, 65, 70, 75, 5, 10, 15, 20, 22, 30, 35, 45, 50, 55, 60, 
65, 70, 75, 9, 14, 19, 24, 29, 34, 39, 44, 5, 7, 10, 2, 7, 12, 
17, 22, 27, 5, 10, 15, 20, 25, 30, 35, 38, 4, 7, 12, 17, 22, 
27, 32, 37, 39, 13, 18, 23, 28, 33, 38, 43, 48, 53, 5, 10, 15, 
20, 25, 30, 35, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 5, 10, 
15, 20, 2, 10, 15, 20, 25, 5, 10, 15, 20, 25, 30, 35, 40, 45, 
5, 8, 12, 5, 10, 14, 19, 24, 5, 10, 15, 20, 25, 30, 35, 40, 45, 
5, 10, 15, 20, 25, 28, 33, 38, 5, 11, 5, 10, 15, 20, 25, 30, 
35, 40, 45, 12, 17, 22, 27, 32, 37, 42, 47, 5, 10, 15, 20, 5, 
5, 10, 15, 20, 25, 30, 35, 40, 45, 5, 5, 10, 5, 10, 15, 20, 25, 
30, 35, 40, 45, 5, 10, 15, 20, 5, 10, 15, 20, 25, 30, 34, 39, 
44, 5, 10, 15, 20, 25, 30, 5, 10, 15, 20, 25, 5, 10, 15, 20, 
25, 5, 10, 15, 20, 25, 29, 5, 10, 15, 20, 23, 25, 30, 35, 40, 
5, 15, 20, 25, 30, 35, 40, 5, 10, 15, 20, 25, 5, 10, 15, 20, 
25, 28, 33, 38, 43, 48, 53, 58, 71, 76, 81, 5, 10, 5, 10, 5, 
10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 5, 
10, 15), inc = c(0, 5, 5, 7, 16, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 10, 7, 8, 6, 4, 15, 5, 10, 12, 8, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 8, 5, 10, 5, 5, 
5, 5, 5, 5, 9, 5, 5, 5, 5, 5, 5, 5, 5, 2, 3, 2, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 3, 4, 3, 5, 5, 5, 5, 5, 5, 2, 13, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 2, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
3, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
3, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 
5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 13, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)), .Names = c("cond", 
"desired", "inc"), row.names = c(NA, -300L), class = c("tbl_df", 
"tbl", "data.frame"))
Run Code Online (Sandbox Code Playgroud)

awc*_*olm 7

这是使用上面的ave()函数和df结构的示例.我正在展示清晰的所有步骤,但如果需要,可以减少这些步骤.

library(dplyr)
df %>% 
  mutate(prevcond = lag(cond)) %>%
  mutate(flag = ifelse(is.na(prevcond) | prevcond !='X', 0, 1)) %>% 
  mutate(counter = cumsum(flag)) %>% 
  mutate(desired2 = ave(inc, counter, FUN = cumsum))
Run Code Online (Sandbox Code Playgroud)