Beh*_*ali 5 python arrays numpy vectorization scipy
我想避免在以下代码中使用for循环来实现性能.矢量化适合这种问题吗?
a = np.array([[0,1,2,3,4],
[5,6,7,8,9],
[0,1,2,3,4],
[5,6,7,8,9],
[0,1,2,3,4]],dtype= np.float32)
temp_a = np.copy(a)
for i in range(1,a.shape[0]-1):
for j in range(1,a.shape[1]-1):
if a[i,j] > 3:
temp_a[i+1,j] += a[i,j] / 5.
temp_a[i-1,j] += a[i,j] / 5.
temp_a[i,j+1] += a[i,j] / 5.
temp_a[i,j-1] += a[i,j] / 5.
temp_a[i,j] -= a[i,j] * 4. / 5.
a = np.copy(temp_a)
Run Code Online (Sandbox Code Playgroud)
您基本上是在进行卷积,并对边界进行一些特殊处理。
请尝试以下操作:
from scipy.signal import convolve2d
# define your filter
f = np.array([[0.0, 0.2, 0.0],
[0.2,-0.8, 0.2],
[0.0, 0.2, 0.0]])
# select parts of 'a' to be used for convolution
b = (a * (a > 3))[1:-1, 1:-1]
# convolve, padding with zeros ('same' mode)
c = convolve2d(b, f, mode='same')
# add the convolved result to 'a', excluding borders
a[1:-1, 1:-1] += c
# treat the special cases of the borders
a[0, 1:-1] += .2 * b[0, :]
a[-1, 1:-1] += .2 * b[-1, :]
a[1:-1, 0] += .2 * b[:, 0]
a[1:-1, -1] += .2 * b[:, -1]
Run Code Online (Sandbox Code Playgroud)
它给出以下结果,与嵌套循环相同。
[[ 0. 2.2 3.4 4.6 4. ]
[ 6.2 2.6 4.2 3. 10.6]
[ 0. 3.4 4.8 6.2 4. ]
[ 6.2 2.6 4.2 3. 10.6]
[ 0. 2.2 3.4 4.6 4. ]]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
289 次 |
| 最近记录: |