T3J*_*J45 4 python cluster-analysis pandas dbscan
我正在对电影镜头数据集执行聚类,我有两种格式的数据集:
旧格式:
uid iid rat
941 1 5
941 7 4
941 15 4
941 117 5
941 124 5
941 147 4
941 181 5
941 222 2
941 257 4
941 258 4
941 273 3
941 294 4
Run Code Online (Sandbox Code Playgroud)
新格式:
uid 1 2 3 4
1 5 3 4 3
2 4 3.6185548023 3.646073985 3.9238342172
3 2.8978348799 2.6692556753 2.7693015618 2.8973463681
4 4.3320762062 4.3407749532 4.3111995162 4.3411425423
940 3.7996234581 3.4979386925 3.5707888503 2
941 5 NaN NaN NaN
942 4.5762594612 4.2752554573 4.2522440019 4.3761477591
943 3.8252406362 5 3.3748860659 3.8487417604
Run Code Online (Sandbox Code Playgroud)
我需要使用 KMeans、DBSCAN 和 HDBSCAN 执行聚类。使用 KMeans,我可以设置和获取集群。
问题仅在 DBSCAN 和 HDBSCAN 中存在,我无法获得足够数量的集群(我知道我们无法手动设置集群)
片段 1:
print "\n\n FOR IRIS DATA-SET:"
from sklearn.datasets import load_iris
iris = load_iris()
dbscan = DBSCAN()
d = pd.DataFrame(iris.data)
dbscan.fit(d)
print "Clusters", set(dbscan.labels_)
Run Code Online (Sandbox Code Playgroud)
片段 1(输出):
FOR IRIS DATA-SET:
Clusters set([0, 1, -1])
Out[30]:
array([ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1,
-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1,
1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1,
1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
Run Code Online (Sandbox Code Playgroud)
片段 2:
import pandas as pd
from sklearn.cluster import DBSCAN
data_set = pd.DataFrame
ch = int(input("Extended Cluster Methods for:\n1. Main Matrix IBCF \n2. Main Matrix UBCF\nCh:"))
if ch is 1:
data_set = pd.read_csv("MainMatrix_IBCF.csv")
data_set = data_set.iloc[:, 1:]
data_set = data_set.dropna()
elif ch is 2:
data_set = pd.read_csv("MainMatrix_UBCF.csv")
data_set = data_set.iloc[:, 1:]
data_set = data_set.dropna()
else:
print "Enter Proper choice!"
print "Starting with DBSCAN for Clustering on\n", data_set.info()
db_cluster = DBSCAN()
db_cluster.fit(data_set)
print "Clusters assigned are:", set(db_cluster.labels_)
Run Code Online (Sandbox Code Playgroud)
片段 2(输出):
Extended Cluster Methods for:
1. Main Matrix IBCF
2. Main Matrix UBCF
Ch:>? 1
Starting with DBSCAN for Clustering on
<class 'pandas.core.frame.DataFrame'>
Int64Index: 942 entries, 0 to 942
Columns: 1682 entries, 1 to 1682
dtypes: float64(1682)
memory usage: 12.1 MB
None
Clusters assigned are: set([-1])
Run Code Online (Sandbox Code Playgroud)
正如所见,它只返回 1 个集群。我想听听我做错了什么。
您需要选择合适的参数。如果 epsilon 太小,一切都会变成噪音。sklearn不应该有这个参数的默认值,需要为每个数据集选择不同的值。
您还需要预处理数据。
用毫无意义的 kmeans 获得“集群”是微不足道的......
不要只调用随机函数。你需要明白你在做什么,否则你只是在浪费时间。
正如@faraway 和@Anony-Mousse 所指出的,解决方案在数据集上比编程更数学化。
终于可以弄清楚集群了。就是这样:
db_cluster = DBSCAN(eps=9.7, min_samples=2, algorithm='ball_tree', metric='minkowski', leaf_size=90, p=2)
arr = db_cluster.fit_predict(data_set)
print "Clusters assigned are:", set(db_cluster.labels_)
uni, counts = np.unique(arr, return_counts=True)
d = dict(zip(uni, counts))
print d
Run Code Online (Sandbox Code Playgroud)
Epsilon 和 Out-lier 概念从SO 中得到了更多启发:如何选择 eps 和 minPts(DBSCAN 算法的两个参数)以获得有效结果?.