doc2vec/gensim - 在时代中改变句子的问题

San*_*ino 1 python gensim word2vec doc2vec

我想上手word2vecdoc2vec使用优秀的教程,在这里这里,并试图使用代码样本.我只添加了line_clean()删除标点符号,停用词等的方法.

但是我line_clean()在训练迭代中调用的方法遇到了麻烦.我理解对全局方法的调用搞砸了,但我不知道如何解决这个问题.

Iteration 1
Traceback (most recent call last):
  File "/Users/santino/Dev/doc2vec_exp/doc2vec_exp_app/doc2vec/untitled.py", line 96, in <module>
    train()
  File "/Users/santino/Dev/doc2vec_exp/doc2vec_exp_app/doc2vec/untitled.py", line 91, in train
    model.train(sentences.sentences_perm(),total_examples=model.corpus_count,epochs=model.iter)
  File "/Users/santino/Dev/doc2vec_exp/doc2vec_exp_app/doc2vec/untitled.py", line 61, in sentences_perm
    shuffled = list(self.sentences)
AttributeError: 'TaggedLineSentence' object has no attribute 'sentences'
Run Code Online (Sandbox Code Playgroud)

我的代码如下:

import gensim
from gensim import utils
from gensim.models.doc2vec import TaggedDocument
from gensim.models import Doc2Vec
import os
import random
import numpy
from sklearn.linear_model import LogisticRegression
import logging
import sys
from nltk import RegexpTokenizer
from nltk.corpus import stopwords

tokenizer = RegexpTokenizer(r'\w+')
stopword_set = set(stopwords.words('english'))


def clean_line(line):
    new_str = unicode(line, errors='replace').lower() #encoding issues
    dlist = tokenizer.tokenize(new_str)
    dlist = list(set(dlist).difference(stopword_set))
    new_line = ' '.join(dlist)
    return new_line


class TaggedLineSentence(object):
    def __init__(self, sources):
        self.sources = sources

        flipped = {}

        # make sure that keys are unique
        for key, value in sources.items():
            if value not in flipped:
                flipped[value] = [key]
            else:
                raise Exception('Non-unique prefix encountered')

    def __iter__(self):
        for source, prefix in self.sources.items():
            with utils.smart_open(source) as fin:
                for item_no, line in enumerate(fin):
                    yield TaggedDocument(utils.to_unicode(clean_line(line)).split(), [prefix + '_%s' % item_no])

    def to_array(self):
        self.sentences = []
        for source, prefix in self.sources.items():
            with utils.smart_open(source) as fin:
                for item_no, line in enumerate(fin):
                    self.sentences.append(TaggedDocument(utils.to_unicode(clean_line(line)).split(), [prefix + '_%s' % item_no]))
        return(self.sentences)

    def sentences_perm(self):
        shuffled = list(self.sentences)
        random.shuffle(shuffled)
        return(shuffled)


def train():
    #create a list data that stores the content of all text files in order of their names in docLabels
    doc_files = [f for f in os.listdir('./data/') if f.endswith('.csv')]

    sources = {}
    for doc in doc_files:
        doc2 = os.path.join('./data',doc)
        sources[doc2] = doc.replace('.csv','')

    sentences = TaggedLineSentence(sources)


    # #iterator returned over all documents
    model = gensim.models.Doc2Vec(size=300, min_count=2, alpha=0.025, min_alpha=0.025)
    model.build_vocab(sentences)

    #training of model
    for epoch in range(10):
        #random.shuffle(sentences)
        print 'iteration '+str(epoch+1)
        #model.train(it)
        model.alpha -= 0.002
        model.min_alpha = model.alpha
        model.train(sentences.sentences_perm(),total_examples=model.corpus_count,epochs=model.iter)
    #saving the created model
    model.save('reddit.doc2vec')
    print "model saved" 

train()
Run Code Online (Sandbox Code Playgroud)

goj*_*omo 6

这些并不是最新版本的精彩教程gensim.特别是,train()使用您自己的alpha/ 手动管理在循环中多次调用是个坏主意min_alpha.这很容易搞砸 - 例如,代码中会出现错误的事情 - 并且对大多数用户没有任何好处.不要改变min_alpha默认值,只调用train()一次 - 然后完成epochs迭代,将学习率alpha从最大值衰减到最小值.

您的具体错误是因为您的TaggedLineSentence类没有sentences属性 - 至少在to_array()调用之后才会有 - 但代码却试图访问该不存在的属性.

整个to_array()/ sentences_perm()方法有点破碎.使用这种可迭代类的原因通常是将大型数据集保留在主存储器之外,从磁盘传输它.但是to_array()然后只需加载所有内容,将其缓存类中 - 消除可迭代的好处.如果你负担得起,因为完整的数据集很容易适应内存,你可以做...

sentences = list(TaggedLineSentence(sources)
Run Code Online (Sandbox Code Playgroud)

...从磁盘迭代一次,然后将语料库保留在内存列表中.

通常不需要在训练期间反复洗牌.只有当训练数据有一些现有的聚集时 - 就像所有具有某些单词/主题的例子在排序的顶部或底部粘在一起 - 是本机排序可能导致训练问题.在这种情况下,在任何训练之前,单次洗牌应该足以消除结块.所以再次假设你的数据适合内存,你可以做...

sentences = random.shuffle(list(TaggedLineSentence(sources)
Run Code Online (Sandbox Code Playgroud)

...一次,然后你就sentences可以Doc2Vec在下面build_vocab()train()(一次)传递给你.