cod*_*101 5 python machine-learning neural-network deep-learning tensorflow
我正在学习TensorFlow并且正在实施一个简单的神经网络,如在TensorFlow文档中的MNIST for Beginners中所解释的那样.这是链接.正如预期的那样,准确率约为80-90%.
然后,使用ConvNet的同一篇文章是MNIST for Experts.而不是实现我决定改进初学者部分.我知道神经网络以及它们如何学习以及深层网络比浅层网络表现更好的事实.我在MNIST for Beginner中修改了原始程序,以实现一个神经网络,其中包含2个隐藏层,每个层包含16个神经元.
它看起来像这样:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
x = tf.placeholder(tf.float32, [None, 784], 'images')
y = tf.placeholder(tf.float32, [None, 10], 'labels')
# We are going to make 2 hidden layer neurons with 16 neurons each
# All the weights in network
W0 = tf.Variable(dtype=tf.float32, name='InputLayerWeights', initial_value=tf.zeros([784, 16]))
W1 = tf.Variable(dtype=tf.float32, name='HiddenLayer1Weights', initial_value=tf.zeros([16, 16]))
W2 = tf.Variable(dtype=tf.float32, name='HiddenLayer2Weights', initial_value=tf.zeros([16, 10]))
# All the biases for the network
B0 = tf.Variable(dtype=tf.float32, name='HiddenLayer1Biases', initial_value=tf.zeros([16]))
B1 = tf.Variable(dtype=tf.float32, name='HiddenLayer2Biases', initial_value=tf.zeros([16]))
B2 = tf.Variable(dtype=tf.float32, name='OutputLayerBiases', initial_value=tf.zeros([10]))
def build_graph():
"""This functions wires up all the biases and weights of the network
and returns the last layer connections
:return: returns the activation in last layer of network/output layer without softmax
"""
A1 = tf.nn.relu(tf.matmul(x, W0) + B0)
A2 = tf.nn.relu(tf.matmul(A1, W1) + B1)
return tf.matmul(A2, W2) + B2
def print_accuracy(sx, sy, tf_session):
"""This function prints the accuracy of a model at the time of invocation
:return: None
"""
correct_prediction = tf.equal(tf.argmax(y), tf.argmax(tf.nn.softmax(build_graph())))
correct_prediction_float = tf.cast(correct_prediction, dtype=tf.float32)
accuracy = tf.reduce_mean(correct_prediction_float)
print(accuracy.eval(feed_dict={x: sx, y: sy}, session=tf_session))
y_predicted = build_graph()
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_predicted))
model = tf.train.GradientDescentOptimizer(0.03).minimize(cross_entropy)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(1000):
batch_x, batch_y = mnist.train.next_batch(50)
if _ % 100 == 0:
print_accuracy(batch_x, batch_y, sess)
sess.run(model, feed_dict={x: batch_x, y: batch_y})
Run Code Online (Sandbox Code Playgroud)
预期的输出应该比仅使用单层时可以实现的更好(假设W0的形状为[784,10]而B0的形状为[10])
def build_graph():
return tf.matmul(x,W0) + B0
Run Code Online (Sandbox Code Playgroud)
相反,输出表明网络根本没有训练.在任何迭代中,准确度都没有超过20%.
提取MNIST_data/train-images-idx3-ubyte.gz
提取MNIST_data/train-labels-idx1-ubyte.gz
提取MNIST_data/t10k-images-idx3-ubyte.gz
提取MNIST_data/t10k-labels-idx1-ubyte.gz
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
上述程序有什么问题,它根本没有概括?如何在不使用卷积神经网络的情况下进一步改进它?
你的主要错误是网络对称的,因为你初始化所有的权重为零.因此,权重永远不会更新.将其更改为小的随机数,它将开始学习.用零初始化偏差是可以的.
另一个问题是纯技术:print_accuracy函数是在计算图中创建新节点,并且由于你在循环中调用它,图形变得臃肿并最终耗尽所有内存.
您可能还希望使用超参数并使网络更大以增加其容量.
编辑:我还发现了准确度计算中的错误.它应该是
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_predicted, 1))
Run Code Online (Sandbox Code Playgroud)
这是一个完整的代码:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
x = tf.placeholder(tf.float32, [None, 784], 'images')
y = tf.placeholder(tf.float32, [None, 10], 'labels')
W0 = tf.Variable(dtype=tf.float32, name='InputLayerWeights', initial_value=tf.truncated_normal([784, 16]) * 0.001)
W1 = tf.Variable(dtype=tf.float32, name='HiddenLayer1Weights', initial_value=tf.truncated_normal([16, 16]) * 0.001)
W2 = tf.Variable(dtype=tf.float32, name='HiddenLayer2Weights', initial_value=tf.truncated_normal([16, 10]) * 0.001)
B0 = tf.Variable(dtype=tf.float32, name='HiddenLayer1Biases', initial_value=tf.ones([16]))
B1 = tf.Variable(dtype=tf.float32, name='HiddenLayer2Biases', initial_value=tf.ones([16]))
B2 = tf.Variable(dtype=tf.float32, name='OutputLayerBiases', initial_value=tf.ones([10]))
A1 = tf.nn.relu(tf.matmul(x, W0) + B0)
A2 = tf.nn.relu(tf.matmul(A1, W1) + B1)
y_predicted = tf.matmul(A2, W2) + B2
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_predicted, 1))
correct_prediction_float = tf.cast(correct_prediction, dtype=tf.float32)
accuracy = tf.reduce_mean(correct_prediction_float)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_predicted))
optimizer = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
mnist = input_data.read_data_sets('mnist', one_hot=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch_x, batch_y = mnist.train.next_batch(64)
_, cost_val, acc_val = sess.run([optimizer, cross_entropy, accuracy], feed_dict={x: batch_x, y: batch_y})
if i % 100 == 0:
print('cost=%.3f accuracy=%.3f' % (cost_val, acc_val))
Run Code Online (Sandbox Code Playgroud)