Foa*_*oad 31
fuglede提供的解决方案非常棒,但如果您的数据非常嘈杂(如图中的那个),您最终会产生许多误导性的本地外景.我建议你使用scipy.signal.argrelextrema功能.argrelextrema有其自身的局限性,但它有一个很酷的功能,你可以指定要比较的点数,类似于噪音过滤算法.例如:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.signal import argrelextrema
# Generate a noisy AR(1) sample
np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
xs.append(xs[-1]*0.9 + r)
df = pd.DataFrame(xs, columns=['data'])
n=5 # number of points to be checked before and after
# Find local peaks
df['min'] = df.iloc[argrelextrema(df.data.values, np.less_equal, order=n)[0]]['data']
df['max'] = df.iloc[argrelextrema(df.data.values, np.greater_equal, order=n)[0]]['data']
# Plot results
plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
plt.plot(df.index, df['data'])
plt.show()
Run Code Online (Sandbox Code Playgroud)
一些要点:
n用来过滤嘈杂的点argrelextrema返回一个元组,[0]最后提取一个numpy数组fug*_*ede 18
假设感兴趣的列被标记data,一个解决方案就是
df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]
Run Code Online (Sandbox Code Playgroud)
例如:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Generate a noisy AR(1) sample
np.random.seed(0)
rs = np.random.randn(200)
xs = [0]
for r in rs:
xs.append(xs[-1]*0.9 + r)
df = pd.DataFrame(xs, columns=['data'])
# Find local peaks
df['min'] = df.data[(df.data.shift(1) > df.data) & (df.data.shift(-1) > df.data)]
df['max'] = df.data[(df.data.shift(1) < df.data) & (df.data.shift(-1) < df.data)]
# Plot results
plt.scatter(df.index, df['min'], c='r')
plt.scatter(df.index, df['max'], c='g')
df.data.plot()
Run Code Online (Sandbox Code Playgroud)
小智 5
您可以执行类似于Foad 的 .argrelextrema() 解决方案的操作,但使用 Pandas .rolling() 函数:
# Find local peaks
n = 5 #rolling period
local_min_vals = df.loc[df['data'] == df['data'].rolling(n, center=True).min()]
local_max_vals = df.loc[df['data'] == df['data'].rolling(n, center=True).max()]
plt.scatter(local_min_vals.index, local_min_vals, c='r')
plt.scatter(local_max_vals.index, local_max_vals, c='g')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10453 次 |
| 最近记录: |