ytr*_*ewq 9 lstm penn-treebank rnn
我正在penn treebank上实施语言模型培训.
我为每个时间步增加了损失然后计算困惑.
即使经过一段时间的训练,这也让我感到非常困难,数千亿.
损失本身会减少,但最多只能减少到20左右.(我需要一位数的损失以获得合理的困惑).
这让我想知道我的困惑计算是否被误导了.
它应该基于每个时间步的损失,然后平均而不是将它们全部添加?
我的batch_size是20,num_steps是35.
def perplexity(loss):
perplexity = np.exp(loss)
return perplexity
...
loss = 0
x = nn.Variable((batch_size, num_steps))
t = nn.Variable((batch_size, num_steps))
e_list = [PF.embed(x_elm, num_words, state_size, name="embed") for x_elm in F.split(x, axis=1)]
t_list = F.split(t, axis=1)
for i, (e_t, t_t) in enumerate(zip(e_list, t_list)):
h1 = l1(F.dropout(e_t,0.5))
h2 = l2(F.dropout(h1,0.5))
y = PF.affine(F.dropout(h2,0.5), num_words, name="pred")
t_t = F.reshape(t_t,[batch_size,1])
loss += F.mean(F.softmax_cross_entropy(y, t_t))
for epoch in range(max_epoch):
....
for i in range(iter_per_epoch):
x.d, t.d = get_words(train_data, i, batch_size)
perp = perplexity(loss.d)
....
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1103 次 |
最近记录: |