Kle*_*ios 10 uberjar apache-spark apache-spark-sql spark-structured-streaming
我使用HDP-2.6.3.0和Spark2包2.2.0.
我正在尝试使用Structured Streaming API编写Kafka使用者,但是在将作业提交到群集后我收到以下错误:
Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: kafka. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:553)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:89)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:89)
at org.apache.spark.sql.execution.datasources.DataSource.sourceSchema(DataSource.scala:198)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo$lzycompute(DataSource.scala:90)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo(DataSource.scala:90)
at org.apache.spark.sql.execution.streaming.StreamingRelation$.apply(StreamingRelation.scala:30)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:150)
at com.example.KafkaConsumer.main(KafkaConsumer.java:21)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$runMain(SparkSubmit.scala:782)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: kafka.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$anonfun$22$anonfun$apply$14.apply(DataSource.scala:537)
at org.apache.spark.sql.execution.datasources.DataSource$anonfun$22$anonfun$apply$14.apply(DataSource.scala:537)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$anonfun$22.apply(DataSource.scala:537)
at org.apache.spark.sql.execution.datasources.DataSource$anonfun$22.apply(DataSource.scala:537)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:537)
... 17 more
Run Code Online (Sandbox Code Playgroud)
以下spark-submit
命令:
$SPARK_HOME/bin/spark-submit \
?--master yarn \
? --deploy-mode client \
?? --class com.example.KafkaConsumer \?
? --executor-cores 2 \
?? --executor-memory 512m \?
--driver-memory 512m \?
sample-kafka-consumer-0.0.1-SNAPSHOT.jar?
Run Code Online (Sandbox Code Playgroud)
我的java代码:
package com.example;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class KafkaConsumer {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("kafkaConsumerApp")
.getOrCreate();
Dataset<Row> ds = spark
.readStream()
.format("kafka")
.option("kafka.bootstrap.servers", "dog.mercadoanalitico.com.br:6667")
.option("subscribe", "my-topic")
.load();
}
}
Run Code Online (Sandbox Code Playgroud)
pom.xml中:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.example</groupId>
<artifactId>sample-kafka-consumer</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<dependencies>
<!-- spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>0.10.1.0</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>local-maven-repo</id>
<url>file:///${project.basedir}/local-maven-repo</url>
</repository>
</repositories>
<build>
<!-- Include resources folder in the .jar -->
<resources>
<resource>
<directory>${basedir}/src/main/resources</directory>
</resource>
</resources>
<plugins>
<!-- Plugin to compile the source. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<!-- Plugin to include all the dependencies in the .jar and set the main class. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<!-- This filter is to workaround the problem caused by included signed jars.
java.lang.SecurityException: Invalid signature file digest for Manifest main attributes
-->
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.example.KafkaConsumer</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Run Code Online (Sandbox Code Playgroud)
[更新] UBER-JAR
下面是pom.xml中用于生成uber-jar的配置
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<!-- This filter is to workaround the problem caused by included signed jars.
java.lang.SecurityException: Invalid signature file digest for Manifest main attributes
-->
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.example.KafkaConsumer</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
Run Code Online (Sandbox Code Playgroud)
Jac*_*ski 19
kafka
数据源是外部模块,默认情况下不适用于Spark应用程序.
你必须将它定义pom.xml
为你的依赖(正如你所做的那样),但这只是你在Spark应用程序中使用它的第一步.
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
Run Code Online (Sandbox Code Playgroud)
有了这种依赖关系,你必须决定是否要创建一个所谓的uber-jar,它将所有依赖项完全捆绑在一起(导致相当大的jar文件并使提交时间更长)或使用--packages
(或不太灵活--jars
)用于在spark-submit
时间添加依赖项的选项.
(还有其他选项,比如在Hadoop HDFS上存储所需的jar或使用Hadoop特定于发行版的方法来定义Spark应用程序的依赖关系,但让我们保持简单)
我建议--packages
先使用,只有在工作时考虑其他选项.
使用spark-submit --packages
于包括火花-SQL卡夫卡0-10模块如下.
spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.2.0
Run Code Online (Sandbox Code Playgroud)
根据需要包括其他命令行选项.
由于目录的处理方式,在所谓的uber-jar中包含所有依赖项可能并不总是有效META-INF
.
要使kafka
数据源工作(以及一般的其他数据源),您必须确保合并META-INF/services/org.apache.spark.sql.sources.DataSourceRegister
所有数据源(不是或使用任何策略).replace
first
kafka
数据源使用自己的META-INF/services/org.apache.spark.sql.sources.DataSourceRegister注册org.apache.spark.sql.kafka010.KafkaSourceProvider作为kafka
格式的数据源提供程序.
最佳答案是正确的,这为我解决了问题:
assemblyMergeStrategy in assembly := {
case "reference.conf" => MergeStrategy.concat
case "META-INF/services/org.apache.spark.sql.sources.DataSourceRegister" => MergeStrategy.concat
case PathList("META-INF", xs@_*) => MergeStrategy.discard
case _ => MergeStrategy.first
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
8348 次 |
最近记录: |