blu*_*e13 19 python regex parsing pandas
我正在寻找一种将复杂文本文件解析为pandas DataFrame的简单方法.下面是一个示例文件,我希望解析后的结果和我当前的方法.
有没有办法让它更简洁/更快/更pythonic /更可读?
我也把这个问题放在Code Review上.
我最终写了一篇博客文章,向初学者解释这一点.
这是一个示例文件:
Sample text
A selection of students from Riverdale High and Hogwarts took part in a quiz. This is a record of their scores.
School = Riverdale High
Grade = 1
Student number, Name
0, Phoebe
1, Rachel
Student number, Score
0, 3
1, 7
Grade = 2
Student number, Name
0, Angela
1, Tristan
2, Aurora
Student number, Score
0, 6
1, 3
2, 9
School = Hogwarts
Grade = 1
Student number, Name
0, Ginny
1, Luna
Student number, Score
0, 8
1, 7
Grade = 2
Student number, Name
0, Harry
1, Hermione
Student number, Score
0, 5
1, 10
Grade = 3
Student number, Name
0, Fred
1, George
Student number, Score
0, 0
1, 0
这是我希望解析后的结果:
                                         Name  Score
School         Grade Student number                 
Hogwarts       1     0                  Ginny      8
                     1                   Luna      7
               2     0                  Harry      5
                     1               Hermione     10
               3     0                   Fred      0
                     1                 George      0
Riverdale High 1     0                 Phoebe      3
                     1                 Rachel      7
               2     0                 Angela      6
                     1                Tristan      3
                     2                 Aurora      9
这是我目前解析它的方式:
import re
import pandas as pd
def parse(filepath):
    """
    Parse text at given filepath
    Parameters
    ----------
    filepath : str
        Filepath for file to be parsed
    Returns
    -------
    data : pd.DataFrame
        Parsed data
    """
    data = []
    with open(filepath, 'r') as file:
        line = file.readline()
        while line:
            reg_match = _RegExLib(line)
            if reg_match.school:
                school = reg_match.school.group(1)
            if reg_match.grade:
                grade = reg_match.grade.group(1)
                grade = int(grade)
            if reg_match.name_score:
                value_type = reg_match.name_score.group(1)
                line = file.readline()
                while line.strip():
                    number, value = line.strip().split(',')
                    value = value.strip()
                    dict_of_data = {
                        'School': school,
                        'Grade': grade,
                        'Student number': number,
                        value_type: value
                    }
                    data.append(dict_of_data)
                    line = file.readline()
            line = file.readline()
        data = pd.DataFrame(data)
        data.set_index(['School', 'Grade', 'Student number'], inplace=True)
        # consolidate df to remove nans
        data = data.groupby(level=data.index.names).first()
        # upgrade Score from float to integer
        data = data.apply(pd.to_numeric, errors='ignore')
    return data
class _RegExLib:
    """Set up regular expressions"""
    # use https://regexper.com to visualise these if required
    _reg_school = re.compile('School = (.*)\n')
    _reg_grade = re.compile('Grade = (.*)\n')
    _reg_name_score = re.compile('(Name|Score)')
    def __init__(self, line):
        # check whether line has a positive match with all of the regular expressions
        self.school = self._reg_school.match(line)
        self.grade = self._reg_grade.match(line)
        self.name_score = self._reg_name_score.search(line)
if __name__ == '__main__':
    filepath = 'sample.txt'
    data = parse(filepath)
    print(data)
Jan*_*Jan 26
那么,看第五次指环王,我不得不把时间缩短到最后的结局:
from parsimonious.grammar import Grammar
from parsimonious.nodes import NodeVisitor
import pandas as pd
grammar = Grammar(
    r"""
    schools         = (school_block / ws)+
    school_block    = school_header ws grade_block+ 
    grade_block     = grade_header ws name_header ws (number_name)+ ws score_header ws (number_score)+ ws? 
    school_header   = ~"^School = (.*)"m
    grade_header    = ~"^Grade = (\d+)"m
    name_header     = "Student number, Name"
    score_header    = "Student number, Score"
    number_name     = index comma name ws
    number_score    = index comma score ws
    comma           = ws? "," ws?
    index           = number+
    score           = number+
    number          = ~"\d+"
    name            = ~"[A-Z]\w+"
    ws              = ~"\s*"
    """
)
tree = grammar.parse(data)
class SchoolVisitor(NodeVisitor):
    output, names = ([], [])
    current_school, current_grade = None, None
    def _getName(self, idx):
        for index, name in self.names:
            if index == idx:
                return name
    def generic_visit(self, node, visited_children):
        return node.text or visited_children
    def visit_school_header(self, node, children):
        self.current_school = node.match.group(1)
    def visit_grade_header(self, node, children):
        self.current_grade = node.match.group(1)
        self.names = []
    def visit_number_name(self, node, children):
        index, name = None, None
        for child in node.children:
            if child.expr.name == 'name':
                name = child.text
            elif child.expr.name == 'index':
                index = child.text
        self.names.append((index, name))
    def visit_number_score(self, node, children):
        index, score = None, None
        for child in node.children:
            if child.expr.name == 'index':
                index = child.text
            elif child.expr.name == 'score':
                score = child.text
        name = self._getName(index)
        # build the entire entry
        entry = (self.current_school, self.current_grade, index, name, score)
        self.output.append(entry)
sv = SchoolVisitor()
sv.visit(tree)
df = pd.DataFrame.from_records(sv.output, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)
^
School\s*=\s*(?P<school_name>.+)
(?P<school_content>[\s\S]+?)
(?=^School|\Z)
^
Grade\s*=\s*(?P<grade>.+)
(?P<students>[\s\S]+?)
(?=^Grade|\Z)
其余的是一个生成器表达式,然后将其输入PEG构造函数(以及列名称).
^
Student\ number,\ Name[\n\r]
(?P<student_names>(?:^\d+.+[\n\r])+)
\s*
^
Student\ number,\ Score[\n\r]
(?P<student_scores>(?:^\d+.+[\n\r])+)
import pandas as pd, re
rx_school = re.compile(r'''
    ^
    School\s*=\s*(?P<school_name>.+)
    (?P<school_content>[\s\S]+?)
    (?=^School|\Z)
''', re.MULTILINE | re.VERBOSE)
rx_grade = re.compile(r'''
    ^
    Grade\s*=\s*(?P<grade>.+)
    (?P<students>[\s\S]+?)
    (?=^Grade|\Z)
''', re.MULTILINE | re.VERBOSE)
rx_student_score = re.compile(r'''
    ^
    Student\ number,\ Name[\n\r]
    (?P<student_names>(?:^\d+.+[\n\r])+)
    \s*
    ^
    Student\ number,\ Score[\n\r]
    (?P<student_scores>(?:^\d+.+[\n\r])+)
''', re.MULTILINE | re.VERBOSE)
result = ((school.group('school_name'), grade.group('grade'), student_number, name, score)
    for school in rx_school.finditer(string)
    for grade in rx_grade.finditer(school.group('school_content'))
    for student_score in rx_student_score.finditer(grade.group('students'))
    for student in zip(student_score.group('student_names')[:-1].split("\n"), student_score.group('student_scores')[:-1].split("\n"))
    for student_number in [student[0].split(", ")[0]]
    for name in [student[0].split(", ")[1]]
    for score in [student[1].split(", ")[1]]
)
df = pd.DataFrame(result, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)
rx_school = re.compile(r'^School\s*=\s*(?P<school_name>.+)(?P<school_content>[\s\S]+?)(?=^School|\Z)', re.MULTILINE)
rx_grade = re.compile(r'^Grade\s*=\s*(?P<grade>.+)(?P<students>[\s\S]+?)(?=^Grade|\Z)', re.MULTILINE)
rx_student_score = re.compile(r'^Student number, Name[\n\r](?P<student_names>(?:^\d+.+[\n\r])+)\s*^Student number, Score[\n\r](?P<student_scores>(?:^\d+.+[\n\r])+)', re.MULTILINE)
            School Grade Student number      Name Score
0   Riverdale High     1              0    Phoebe     3
1   Riverdale High     1              1    Rachel     7
2   Riverdale High     2              0    Angela     6
3   Riverdale High     2              1   Tristan     3
4   Riverdale High     2              2    Aurora     9
5         Hogwarts     1              0     Ginny     8
6         Hogwarts     1              1      Luna     7
7         Hogwarts     2              0     Harry     5
8         Hogwarts     2              1  Hermione    10
9         Hogwarts     3              0      Fred     0
10        Hogwarts     3              1    George     0
这里是我的建议使用split和pd.concat("txt"代表问题中原始文本的副本),基本上这个想法是按组词拆分然后连接成数据帧,最内部解析利用名称和等级采用csv格式的事实.开始:
import pandas as pd
from io import StringIO
schools = txt.lower().split('school = ')
schools_dfs = []
for school in schools[1:]:
    grades = school.split('grade = ') 
    grades_dfs = []
    for grade in grades[1:]:
        features = grade.split('student number,')
        feature_dfs = []
        for feature in features[1:]:
            feature_dfs.append(pd.read_csv(StringIO(feature)))
        feature_df = pd.concat(feature_dfs, axis=1)
        feature_df['grade'] = features[0].replace('\n','')
        grades_dfs.append(feature_df)
    grades_df = pd.concat(grades_dfs)
    grades_df['school'] = grades[0].replace('\n','')
    schools_dfs.append(grades_df)
schools_df = pd.concat(schools_dfs)
schools_df.set_index(['school', 'grade'])
我建议使用像parsy一样的解析器组合库.与使用正则表达式相比,结果将不那么简洁,但它将更具可读性和健壮性,同时仍然相对轻量级.
解析通常是一项非常艰巨的任务,并且很难找到一种对初级编程人员来说非常有用的方法.
编辑:一些实际的示例代码,对您提供的示例进行最小的解析.它不会传递给大熊猫,甚至不会将名称与分数匹配,或者将学生与分数匹配等等 - 它只返回从School顶部开始的对象层次结构,并具有您期望的相关属性:
from parsy import string, regex, seq
import attr
@attr.s
class Student():
    name = attr.ib()
    number = attr.ib()
@attr.s
class Score():
    score = attr.ib()
    number = attr.ib()
@attr.s
class Grade():
    grade = attr.ib()
    students = attr.ib()
    scores = attr.ib()
@attr.s
class School():
    name = attr.ib()
    grades = attr.ib()
integer = regex(r"\d+").map(int)
student_number = integer
score = integer
student_name = regex(r"[^\n]+")
student_def = seq(student_number.tag('number') << string(", "),
                  student_name.tag('name') << string("\n")).combine_dict(Student)
student_def_list = string("Student number, Name\n") >> student_def.many()
score_def = seq(student_number.tag('number') << string(", "),
                score.tag('score') << string("\n")).combine_dict(Score)
score_def_list = string("Student number, Score\n") >> score_def.many()
grade_value = integer
grade_def = string("Grade = ") >> grade_value << string("\n")
school_grade = seq(grade_def.tag('grade'),
                   student_def_list.tag('students') << regex(r"\n*"),
                   score_def_list.tag('scores') << regex(r"\n*")
                   ).combine_dict(Grade)
school_name = regex(r"[^\n]+")
school_def = string("School = ") >> school_name << string("\n")
school = seq(school_def.tag('name'),
             school_grade.many().tag('grades')
             ).combine_dict(School)
def parse(text):
    return school.many().parse(text)
这比正则表达式解决方案更冗长,但更接近于文件格式的声明性定义.