我有时ftable
纯粹使用该函数来表示层次类别.但是,有时候,当表很大时,我想在使用它之前进一步对表进行子集化.
假设我们从以下开始:
mytable <- ftable(Titanic, row.vars = 1:3)
mytable
## Survived No Yes
## Class Sex Age
## 1st Male Child 0 5
## Adult 118 57
## Female Child 0 1
## Adult 4 140
## 2nd Male Child 0 11
## Adult 154 14
## Female Child 0 13
## Adult 13 80
## 3rd Male Child 35 13
## Adult 387 75
## Female Child 17 14
## Adult 89 76
## Crew Male Child 0 0
## Adult 670 192
## Female Child 0 0
## Adult 3 20
str(mytable)
## ftable [1:16, 1:2] 0 118 0 4 0 154 0 13 35 387 ...
## - attr(*, "row.vars")=List of 3
## ..$ Class: chr [1:4] "1st" "2nd" "3rd" "Crew"
## ..$ Sex : chr [1:2] "Male" "Female"
## ..$ Age : chr [1:2] "Child" "Adult"
## - attr(*, "col.vars")=List of 1
## ..$ Survived: chr [1:2] "No" "Yes"
## NULL
Run Code Online (Sandbox Code Playgroud)
因为没有dimnames
,我无法以与拥有对象相同的方式提取数据dimnames
.例如,我无法直接从"1st"和"3rd"类中提取所有"Child"值.
我目前的方法是将其转换为a table
,进行提取,然后将其转换回ftable
.
例:
mytable[c("1st", "3rd"), , "Child", ]
## Error: incorrect number of dimensions
## Only the underlying data are seen as having dims
dim(mytable)
## [1] 16 2
## I'm OK with the "Age" column being dropped in this case....
ftable(as.table(mytable)[c("1st", "3rd"), , "Child", ])
## Survived No Yes
## Class Sex
## 1st Male 0 5
## Female 0 1
## 3rd Male 35 13
## Female 17 14
Run Code Online (Sandbox Code Playgroud)
但是,我不喜欢这种方法,因为如果你不小心,整体布局有时会改变.将其与以下内容进行比较,从而消除了仅对子集进行子集化的要求,并添加了仅对未生存的子集进行子集化的要求:
ftable(as.table(mytable)[c("1st", "3rd"), , , "No"])
## Age Child Adult
## Class Sex
## 1st Male 0 118
## Female 0 4
## 3rd Male 35 387
## Female 17 89
Run Code Online (Sandbox Code Playgroud)
我不喜欢行和列的整体布局已经改变.这是一个经典案例,必须记住在drop = FALSE
提取单个列时使用维度维度:
ftable(as.table(mytable)[c("1st", "3rd"), , , "No", drop = FALSE])
## Survived No
## Class Sex Age
## 1st Male Child 0
## Adult 118
## Female Child 0
## Adult 4
## 3rd Male Child 35
## Adult 387
## Female Child 17
## Adult 89
Run Code Online (Sandbox Code Playgroud)
我知道有很多方法可以获得我想要的数据,从原始数据的子集开始然后制作我的数据ftable
,但对于这个问题,我们假设这是不可能的.
最终目标是让我从ftable
保留嵌套"行"层次结构的显示格式中提取一种方法.
还有其他解决方案吗?我们可以使用row.vars
和col.vars
属性从中提取数据ftable
并保留其格式吗?
我目前的方法也不适用于分层列,所以我希望提出的解决方案也可以处理这些情况.
例:
tab2 <- ftable(Titanic, row.vars = 1:2, col.vars = 3:4)
tab2
## Age Child Adult
## Survived No Yes No Yes
## Class Sex
## 1st Male 0 5 118 57
## Female 0 1 4 140
## 2nd Male 0 11 154 14
## Female 0 13 13 80
## 3rd Male 35 13 387 75
## Female 17 14 89 76
## Crew Male 0 0 670 192
## Female 0 0 3 20
Run Code Online (Sandbox Code Playgroud)
注意"Age"和"Survived"的嵌套.
试试我目前的做法:
ftable(as.table(tab2)[c("1st", "3rd"), , , , drop = FALSE])
## Survived No Yes
## Class Sex Age
## 1st Male Child 0 5
## Adult 118 57
## Female Child 0 1
## Adult 4 140
## 3rd Male Child 35 13
## Adult 387 75
## Female Child 17 14
## Adult 89 76
Run Code Online (Sandbox Code Playgroud)
我可以回到我想要的东西:
ftable(as.table(tab2)[c("1st", "3rd"), , , , drop = FALSE], row.vars = 1:2, col.vars = 3:4)
Run Code Online (Sandbox Code Playgroud)
但我希望有更直接的东西.
A5C*_*2T1 12
replace_empty_arguments <- function(a) {
empty_symbols <- vapply(a, function(x) {
is.symbol(x) && identical("", as.character(x)), 0)
}
a[!!empty_symbols] <- 0
lapply(a, eval)
}
`[.ftable` <- function (inftable, ...) {
if (!class(inftable) %in% "ftable") stop("input is not an ftable")
tblatr <- attributes(inftable)[c("row.vars", "col.vars")]
valslist <- replace_empty_arguments(as.list(match.call()[-(1:2)]))
x <- sapply(valslist, function(x) identical(x, 0))
TAB <- as.table(inftable)
valslist[x] <- dimnames(TAB)[x]
temp <- as.matrix(expand.grid(valslist))
out <- ftable(
`dimnames<-`(`dim<-`(TAB[temp], lengths(valslist)), valslist),
row.vars = seq_along(tblatr[["row.vars"]]),
col.vars = seq_along(tblatr[["col.vars"]]) + length(tblatr[["row.vars"]]))
names(attributes(out)[["row.vars"]]) <- names(tblatr[["row.vars"]])
names(attributes(out)[["col.vars"]]) <- names(tblatr[["col.vars"]])
out
}
Run Code Online (Sandbox Code Playgroud)
尝试使用问题中的示例:
mytable[c("1st", "3rd"), , "Child", ]
## Survived No Yes
## Class Sex Age
## 1st Male Child 0 5
## Female Child 0 1
## 3rd Male Child 35 13
## Female Child 17 14
mytable[c("1st", "3rd"), , , "No"]
## Survived No
## Class Sex Age
## 1st Male Child 0
## Adult 118
## Female Child 0
## Adult 4
## 3rd Male Child 35
## Adult 387
## Female Child 17
## Adult 89
tab2[c("1st", "3rd"), , , ]
## Age Child Adult
## Survived No Yes No Yes
## Class Sex
## 1st Male 0 5 118 57
## Female 0 1 4 140
## 3rd Male 35 13 387 75
## Female 17 14 89 76
Run Code Online (Sandbox Code Playgroud)