Gle*_*ade 5 python neural-network lstm tensorflow recurrent-neural-network
尝试运行时,抛出以下异常(ValueError)
ValueError: Shape () must have rank at least 2
Run Code Online (Sandbox Code Playgroud)
这是针对以下行抛出的:
states_series, current_state = tf.contrib.rnn.static_rnn(cell, inputs_series, init_state)
Run Code Online (Sandbox Code Playgroud)
这里cell定义的地方:
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True)
Run Code Online (Sandbox Code Playgroud)
查看RNN和Tesor_shape的规则,我可以看到这是某种张量维度形状问题。据我所知,它没有被BasicLSTMCell视为一个秩为 2 的矩阵?
完整错误:
/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6 /Users/glennhealy/PycharmProjects/firstRNNTest/LSTM-RNN.py
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6
return f(*args, **kwds)
Traceback (most recent call last):
File "/Users/glennhealy/PycharmProjects/firstRNNTest/LSTM-RNN.py", line 42, in <module>
states_series, current_state = tf.contrib.rnn.static_rnn(cell, inputs_series, init_state)
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/ops/rnn.py", line 1181, in static_rnn
input_shape = first_input.get_shape().with_rank_at_least(2)
File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 670, in with_rank_at_least
raise ValueError("Shape %s must have rank at least %d" % (self, rank))
ValueError: Shape () must have rank at least 2
Process finished with exit code 1
Run Code Online (Sandbox Code Playgroud)
编码:
state_size = 4
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True)
states_series, current_state = tf.contrib.rnn.static_rnn(cell, inputs_series, init_state)
Run Code Online (Sandbox Code Playgroud)
Tensorflow 1.2.1 Python 3.6 NumPy
更新更多信息:
考虑到@Maxim 给出的建议,我可以看到问题是我的input_series,这导致了形状问题,但是,我似乎无法理解他的建议。
一些有助于解决问题的更多信息,看看我是否能理解如何解决这个问题:
以下是否可以替代我的 BatchY 和 BatchX 占位符??
X = tf.placeholder(dtype=tf.float32, shape=[None, n_steps, n_inputs])
X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))
basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=n_neurons)
output_seqs, states = tf.nn.static_rnn(basic_cell, X_seqs, dtype=tf.float32)
Run Code Online (Sandbox Code Playgroud)
那么,我是否必须对以下内容进行更改以反映以下内容的语法?
batchX_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
#unpacking the columns:
labels_series = tf.unstack(batchY_placeholder, axis=1)
inputs_series = tf.split(1, truncated_backprop_length, batchX_placeholder)
#Forward pass
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True)
states_series, current_state = tf.contrib.rnn.static_rnn(cell, inputs_series, init_state)
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series,labels_series)]
total_loss = tf.reduce_mean(losses)
Run Code Online (Sandbox Code Playgroud)
是的,问题出在inputs_series. 根据错误,它是一个形状为 的张量(),即只是一个数字。
来自tf.nn.static_rnn文档:
inputs:输入的长度T列表,每个输入都是形状的张量[batch_size, input_size],或此类元素的嵌套元组。
在大多数情况下,您希望inputs成为[seq_length, None, input_size],其中:
seq_length是序列长度,或 LSTM 单元的数量。None代表批量大小(任意)。input_size是每个单元格的特征数量。因此,请确保您的占位符(以及inputs_series由它们转换而来的 )具有适当的形状。例子:
X = tf.placeholder(dtype=tf.float32, shape=[None, n_steps, n_inputs])
X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))
basic_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=n_neurons)
output_seqs, states = tf.nn.static_rnn(basic_cell, X_seqs, dtype=tf.float32)
Run Code Online (Sandbox Code Playgroud)
更新:
这是分割张量的错误方法:
# WRONG!
inputs_series = tf.split(1, truncated_backprop_length, batchX_placeholder)
Run Code Online (Sandbox Code Playgroud)
你应该这样做(注意参数的顺序):
inputs_series = tf.split(batchX_placeholder, truncated_backprop_length, axis=1)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
7251 次 |
| 最近记录: |