我有一个样本数据集:
import pandas as pd
d = {
'H#': ['12843','12843','12843','12843','20000','20000','20000','20000','20000'],
'measure':[1,1,1,3,3,3,3,2,2],
'D':[1,0,2,1,1,1,2,1,1],
'N':[2,3,1,4,5,0,0,0,2]
}
df = pd.DataFrame(d)
df = df.reindex_axis(['H#','measure', 'D','N'], axis=1)
Run Code Online (Sandbox Code Playgroud)
看起来像:
H# measure D N
0 12843 1 1 2
1 12843 1 0 3
2 12843 1 2 1
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
7 20000 2 1 0
8 20000 2 1 2
Run Code Online (Sandbox Code Playgroud)
我想将 groupby 应用于不是通过 'H#' 和 'measure'测量=3 的行,以求和 'D' 和 'N'。期望的输出:
H# measure D N
0 12843 1 3 6
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
7 20000 2 2 2
Run Code Online (Sandbox Code Playgroud)
我的尝试:
mask=df["measure"]!=3 #first to mask the rows for the groupby
#the following line has the wrong syntax, how can i apply groupby to the masked dataset?
df.loc[mask,]= df.loc[mask,].groupby(['H#','measure'],as_index=False)['D','N'].sum()
Run Code Online (Sandbox Code Playgroud)
最后一行代码的语法是错误的,我如何将 groupby 应用于屏蔽数据集?
国际大学学院:
In [90]: (df[df.measure!=3]
.groupby(['H#','measure'], as_index=False)
.sum()
.append(df.loc[df.measure==3]))
Out[90]:
H# measure D N
0 12843 1 3 6
1 20000 2 2 2
3 12843 3 1 4
4 20000 3 1 5
5 20000 3 1 0
6 20000 3 2 0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2477 次 |
| 最近记录: |