Fan*_*hai 35 neural-network keras tensorflow tensorboard
所以我在keras中使用tensorboard.在张量流中,可以使用两个不同的摘要写入器用于训练和验证标量,以便张量板可以在同一个图中绘制它们.有点像图中
TensorBoard - 在同一图表上绘制培训和验证损失?
在keras有办法做到这一点吗?
谢谢.
Yu-*_*ang 67
要使用单独的编写器处理验证日志,您可以编写包含原始TensorBoard方法的自定义回调.
import os
import tensorflow as tf
from keras.callbacks import TensorBoard
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
# Make the original `TensorBoard` log to a subdirectory 'training'
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
# Log the validation metrics to a separate subdirectory
self.val_log_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
# Setup writer for validation metrics
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
# Pop the validation logs and handle them separately with
# `self.val_writer`. Also rename the keys so that they can
# be plotted on the same figure with the training metrics
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
# Pass the remaining logs to `TensorBoard.on_epoch_end`
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
Run Code Online (Sandbox Code Playgroud)
__init__,为训练和验证日志设置了两个子目录set_model,self.val_writer为验证日志创建编写器on_epoch_end,验证日志与训练日志分开并写入文件self.val_writer以MNIST数据集为例:
from keras.models import Sequential
from keras.layers import Dense
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
Run Code Online (Sandbox Code Playgroud)
然后,您可以在TensorBoard中的同一图形上显示两条曲线.
编辑:我已经修改了一些类,以便它可以与急切的执行一起使用.
最大的变化是我tf.keras在下面的代码中使用.似乎TensorBoard独立Keras 的回调还不支持eager模式.
import os
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.python.eager import context
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
self.val_log_dir = os.path.join(log_dir, 'validation')
training_log_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(training_log_dir, **kwargs)
def set_model(self, model):
if context.executing_eagerly():
self.val_writer = tf.contrib.summary.create_file_writer(self.val_log_dir)
else:
self.val_writer = tf.summary.FileWriter(self.val_log_dir)
super(TrainValTensorBoard, self).set_model(model)
def _write_custom_summaries(self, step, logs=None):
logs = logs or {}
val_logs = {k.replace('val_', ''): v for k, v in logs.items() if 'val_' in k}
if context.executing_eagerly():
with self.val_writer.as_default(), tf.contrib.summary.always_record_summaries():
for name, value in val_logs.items():
tf.contrib.summary.scalar(name, value.item(), step=step)
else:
for name, value in val_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, step)
self.val_writer.flush()
logs = {k: v for k, v in logs.items() if not 'val_' in k}
super(TrainValTensorBoard, self)._write_custom_summaries(step, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()
Run Code Online (Sandbox Code Playgroud)
这个想法是一样的 -
TensorBoard回调的源代码同样,您可以使用MNIST数据进行测试,
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.train import AdamOptimizer
tf.enable_eager_execution()
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = y_train.astype(int)
y_test = y_test.astype(int)
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer=AdamOptimizer(), metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[TrainValTensorBoard(write_graph=False)])
Run Code Online (Sandbox Code Playgroud)
小智 6
如果您使用的是TensorFlow 2.0,则现在默认情况下使用Keras TensorBoard回调来获取它。(将TensorFlow与Keras结合使用时,请确保您使用的是tensorflow.keras。)
请参阅本教程:
https://www.tensorflow.org/tensorboard/r2/scalars_and_keras
| 归档时间: |
|
| 查看次数: |
11929 次 |
| 最近记录: |