list_local_device张量流未检测到GPU

kim*_*ake 5 keras tensorflow tensorflow-gpu

  1. 有没有办法检查我的安装GPU版本Tensorflow
  2. !nvidia-smi

2017年12月18日星期一23:58:01

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.90                 Driver Version: 384.90                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1070    Off  | 00000000:01:00.0  On |                  N/A |
| N/A   53C    P0    31W /  N/A |   1093MiB /  8105MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1068      G   /usr/lib/xorg/Xorg                           599MiB |
|    0      2925      G   compiz                                       290MiB |
|    0      3611      G   ...-token=11A9F5872A56620B72D1D5DF707CF1FC   200MiB |
|    0      5786      G   /usr/bin/nvidia-settings                       0MiB |
+-----------------------------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)

但是,当我尝试检测本地设备列表时,只会CPU被检测到。

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

[name: "/cpu:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 3303842605833347443
]
Run Code Online (Sandbox Code Playgroud)

我是否需要设置其他内容才能使用GPUfor KerasTensorflow

dxf*_*dxf 1

您可能需要这个shell来配置您的tensorflow-gpu。

如果你想检查tensorflow-gpu,你可以运行它。

import tensorflow as tf
with tf.device('/gpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)
Run Code Online (Sandbox Code Playgroud)

官方文档:使用 GPU