我觉得找到合适的词语对我正在努力做的事情有点困难.
说我有这个数据帧:
library(dplyr)
# A tibble: 74 x 3
country year conf_perc
<chr> <dbl> <dbl>
1 Canada 2017 77
2 France 2017 45
3 Germany 2017 60
4 Greece 2017 33
5 Hungary 2017 67
6 Italy 2017 38
7 Canada 2009 88
8 France 2009 91
9 Germany 2009 93
10 Greece 2009 NA
11 Hungary 2009 NA
12 Italy 2009 NA
Run Code Online (Sandbox Code Playgroud)
现在我想要删除NA
2009年具有值的行,但我想在2017年删除这些国家/地区的行.我想得到以下结果:
# A tibble: 74 x 3
country year conf_perc
<chr> <dbl> <dbl>
1 Canada 2017 77
2 France 2017 45
3 Germany 2017 60
4 Canada 2009 88
5 France 2009 91
6 Germany 2009 93
Run Code Online (Sandbox Code Playgroud)
any
按'国家'分组后我们可以做
library(dplyr)
df1 %>%
group_by(country) %>%
filter(!any(is.na(conf_perc)))
# A tibble: 6 x 3
# Groups: country [3]
# country year conf_perc
# <chr> <int> <int>
#1 Canada 2017 77
#2 France 2017 45
#3 Germany 2017 60
#4 Canada 2009 88
#5 France 2009 91
#6 Germany 2009 93
Run Code Online (Sandbox Code Playgroud)