Par*_*eog 6 python machine-learning scikit-learn data-science
如果问题的标题不是很清楚,我很抱歉,我无法用一句话概括问题。
以下是用于解释的简化数据集。基本上,训练集中的类别数量远大于测试集中的类别数量,因此 OneHotEncoding 后测试和训练集中的列数存在差异。我该如何处理这个问题?
训练集
+-------+----------+
| Value | Category |
+-------+----------+
| 100 | SE1 |
+-------+----------+
| 200 | SE2 |
+-------+----------+
| 300 | SE3 |
+-------+----------+
Run Code Online (Sandbox Code Playgroud)
OneHotEncoding后的训练集
+-------+-----------+-----------+-----------+
| Value | DummyCat1 | DummyCat2 | DummyCat3 |
+-------+-----------+-----------+-----------+
| 100 | 1 | 0 | 0 |
+-------+-----------+-----------+-----------+
| 200 | 0 | 1 | 0 |
+-------+-----------+-----------+-----------+
| 300 | 0 | 0 | 1 |
+-------+-----------+-----------+-----------+
Run Code Online (Sandbox Code Playgroud)
测试装置
+-------+----------+
| Value | Category |
+-------+----------+
| 100 | SE1 |
+-------+----------+
| 200 | SE1 |
+-------+----------+
| 300 | SE2 |
+-------+----------+
Run Code Online (Sandbox Code Playgroud)
OneHotEncoding后的测试集
+-------+-----------+-----------+
| Value | DummyCat1 | DummyCat2 |
+-------+-----------+-----------+
| 100 | 1 | 0 |
+-------+-----------+-----------+
| 200 | 1 | 0 |
+-------+-----------+-----------+
| 300 | 0 | 1 |
+-------+-----------+-----------+
Run Code Online (Sandbox Code Playgroud)
您可以注意到,OneHotEncoding 之后的训练集的形状为(3,4)
,而 OneHotEncoding 之后的测试集的形状为(3,3)
。因此,当我执行以下代码时(y_train
是形状的列向量(3,)
)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train, y_train)
x_pred = regressor.predict(x_test)
Run Code Online (Sandbox Code Playgroud)
我在预测函数中收到错误。正如您所看到的,与基本示例不同,错误的尺寸非常大。
Traceback (most recent call last):
File "<ipython-input-2-5bac76b24742>", line 30, in <module>
x_pred = regressor.predict(x_test)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py", line 256, in predict
return self._decision_function(X)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py", line 241, in _decision_function
dense_output=True) + self.intercept_
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/extmath.py", line 140, in safe_sparse_dot
return np.dot(a, b)
ValueError: shapes (4801,2236) and (4033,) not aligned: 2236 (dim 1) != 4033 (dim 0)
Run Code Online (Sandbox Code Playgroud)
您必须x_test
按照 x_train 的转换方式进行转换。
x_test = onehotencoder.transform(x_test)
x_pred = regressor.predict(x_test)
Run Code Online (Sandbox Code Playgroud)
确保使用onehotencoder
与fit()
x_train 相同的对象。
我假设您当前正在测试数据上使用 fit_transform() 。做fit()
或者fit_transform()
忘记之前学过的数据,重新拟合oneHotEncoder。现在它会认为列中仅存在两个不同的值,因此将改变输出的形状。