根据日期在熊猫群内进行有效转移?

use*_*200 5 python performance memory-efficient dataframe pandas

我有一个数据框df

df = pd.DataFrame({'id1':[1,1,1,1,1,4,4,4,6,6],
                     'id2':[45,45,33,33,33,1,1,1,34,34],
                     'vals':[0.1,0.2,0.6,0.1,0.15,0.34,0.12,0.5,0.4,0.45],
                     'date':pd.to_datetime(['2017-01-01','2017-01-02','2017-01-01',
                                            '2017-04-01','2017-04-02','2017-01-01',
                                            '2017-01-02','2017-01-03','2017-01-04',
                                            '2017-01-05'])})
Run Code Online (Sandbox Code Playgroud)

我想根据时间来产生延迟方面各组的id1id2。例如,t_1将是前一天的值。t_2是两天前的值。如果前两天没有任何价值,我希望是nan。这将是上述数据帧的输出:

    date        id1 id2 vals    t_1   t_2
0   2017-01-01  1   33  0.60    NaN   NaN
1   2017-04-01  1   33  0.10    NaN   NaN
2   2017-04-02  1   33  0.15    0.10  NaN
0   2017-01-01  1   45  0.10    NaN   NaN
1   2017-01-02  1   45  0.20    0.10  NaN
0   2017-01-01  4   1   0.34    NaN   NaN
1   2017-01-02  4   1   0.12    0.34  NaN
2   2017-01-03  4   1   0.50    0.12  0.34
0   2017-01-04  6   34  0.40    NaN   NaN
1   2017-01-05  6   34  0.45    0.40  NaN
Run Code Online (Sandbox Code Playgroud)

我可以用下面的代码做到这一点,但它是大量组的效率非常低-也就是说,如果我有10000×500的独特组合id1id2几个每个数据的日子里,我想2点滞后而言,它需要一个很长的时间。

num_of_lags = 2
for i in range(1, num_of_lags+1):
    final = pd.DataFrame()
    for name, group in df.groupby(['id1', 'id2']):
        temp = group.set_index('date', verify_integrity=False)
        temp = temp.shift(i, 'D').rename(columns={'vals':'t_' + str(i)}).reset_index()
        group = pd.merge(group, temp[['id1', 'id2', 'date', 't_' + str(i)]], 
                         on=['id1', 'id2', 'date'], how='left')
        final = pd.concat([final, group], axis=0)
    df = final.copy()
Run Code Online (Sandbox Code Playgroud)

有更有效的方法吗?

P.T*_*ann 5

通过组合使用取消堆栈分配组和转移组的可能性,可以避免使用apply的使用,从而大大提高了速度。

def compute_shift(df):
  df['group_no'] = df.groupby(['id1','id2']).ngroup()
  tmp = df[['date','vals','group_no']].set_index(['group_no','date'])\
                                      .unstack('group_no')\
                                      .resample('D').asfreq()
  tmp1 = tmp.shift(1).stack('group_no')['vals'].rename('t_1')
  tmp2 = tmp.shift(2).stack('group_no')['vals'].rename('t_2')

  df = df.join(tmp1, on=['date','group_no'])
  df = df.join(tmp2, on=['date','group_no'])
  return df

compute_shift(df)
date  id1  id2  vals  group_no   t_1   t_2
0 2017-01-01    1   45  0.10         1   NaN   NaN
1 2017-01-02    1   45  0.20         1  0.10   NaN
2 2017-01-01    1   33  0.60         0   NaN   NaN
3 2017-04-01    1   33  0.10         0   NaN   NaN
4 2017-04-02    1   33  0.15         0  0.10   NaN
5 2017-01-01    4    1  0.34         2   NaN   NaN
6 2017-01-02    4    1  0.12         2  0.34   NaN
7 2017-01-03    4    1  0.50         2  0.12  0.34
8 2017-01-04    6   34  0.40         3   NaN   NaN
9 2017-01-05    6   34  0.45         3  0.40   NaN
Run Code Online (Sandbox Code Playgroud)

为了比较性能,我创建了一个大小合理的伪数据集:

df = pd.DataFrame({'date':np.random.randint(1, 1000, 10**6), 
                   'id1':np.random.randint(1, 100, 10**6),
                   'id2':np.random.randint(1, 100, 10**6),
                   'vals':np.random.random(10**6)})
df = df.drop_duplicates(subset=['date','id1','id2'], keep='last')
df = df.sort_values('date')
dates = pd.date_range('20150101','20180101').to_series().reset_index(drop=True)
df['date'] = df['date'].map(dates)
Run Code Online (Sandbox Code Playgroud)

如果将性能与Wen和Scott的解决方案进行比较:

%timeit df.groupby(['id1','id2'],sort=False).apply(lambda x : x['vals'].shift()*((x['date'] -  pd.to_timedelta(1, unit='d')).isin(x['date'].tolist())).replace(False,np.nan))
824 ms ± 19.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit df.groupby(['id1','id2'], as_index=False)\
   .apply(lambda x: x.assign(t_1=x.vals.resample('D').asfreq().shift(1),\
                             t_2=x.vals.resample('D').asfreq().shift(2)))
1.38 s ± 25.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit compute_shift(df)
96.4 ms ± 2.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Run Code Online (Sandbox Code Playgroud)

如果您的DataFrame不是那么大,我可能会更喜欢Scott Bostons解决方案,因为它感觉更干净,但是如果需要考虑运行时,unstack + shift + join会更快。

编辑:添加了重新采样以填充缺少的日期。