实际上,我们不能在if语句中使用tf.var作为布尔值,而不是使用tf.cond。我为规范化的输入数据编写此代码,并得到令人困惑的错误,我在哪里做错了?
def global_contrast_normalize(X, scale=1., subtract_mean=True,use_std=False,
sqrt_bias=0., min_divisor=1e-8):
mean=tf.reduce_mean(X,axis=1)
if subtract_mean:
X = X - mean[:, numpy.newaxis] # Makes a copy.
else:
X = tf.copy.copy(X)
if X.get_shape()[1]==1:
#ddof = 0
mean, var = tf.nn.moments(X, axes=[1])
normalizers = tf.sqrt(sqrt_bias + var) / scale
else:
normalizers = tf.sqrt(sqrt_bias + tf.reduce_sum((X ** 2),axis=1)) / scale
Normalizers= tf.Variable(normalizers,'float32')
M=tf.Variable(min_divisor,'float32')
tf.cond( tf.less_equal(Normalizers,M),lambda:tf.assign(Normalizers, [1]),lambda:tf.assign(Normalizers,normalizers))
X /= Normalizers[:, tf.newaxis] # Does not make a copy.
return X
Run Code Online (Sandbox Code Playgroud)
错误:
在_call_cpp_shape_fn_impl中引发ValueError(err.message)
ValueError:形状必须为等级0,但对于输入形状为[1],[1]的“ cond_11 / Switch”(op:“ Switch”),等级为1。
小智 6
错误表明预期输入是标量(等级 0),但形状为 ([1],[1])。通常,您可以通过将输入重新整形为标量值(使用tf.reshape(Normalizers, [])
)来解决此问题。
对于这种情况,您似乎希望根据它们是否 <= M 有条件地设置 Normalizers 的值。tf.where
正是如此。
(注意,您不必将 normalizers 或 min_divisor 转换为 tf.Variable)
tf.where 的示例用法:
def global_contrast_normalize(...):
...
comparison = tf.less_equal(normalizers,M)
normalizers = tf.where(comparison, tf.ones_like(normalizers), normalizers
X /= normalizers[:, tf.newaxis]
return X
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
9863 次 |
最近记录: |