使用 Dataset-API 执行相同的任务似乎比使用队列慢 10-100 倍。
这就是我试图用数据集做的事情:
dataset = tf.data.TFRecordDataset(filenames).repeat()
dataset = dataset.batch(100)
dataset = dataset.map(_parse_function)
dataset = dataset.prefetch(1000)
d = dataset.make_one_shot_iterator()
%timeit -n 200 sess.run(d.get_next())
Run Code Online (Sandbox Code Playgroud)
这与队列:
filename_queue = tf.train.string_input_producer(filenames, capacity=1)
reader = tf.TFRecordReader()
_, serialized_example = reader.read_up_to(filename_queue, 100)
features = _parse_function(serialized_example)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
tf.train.start_queue_runners()
%timeit -n 200 sess.run(features)
Run Code Online (Sandbox Code Playgroud)
观察结果:
数据集:
23.6 ms ± 8.73 ms per loop (mean ± std. dev. of 7 runs, 200 loops each)
队列:
481 µs ± 91.7 µs per loop (mean ± std. dev. of 7 runs, 200 loops each)
为什么会发生这种情况?如何使数据集工作得更快?
使用 tensorflow 1.4 和 python 3.5
要重现的完整代码:
import tensorflow as tf
import numpy as np
import glob
import os
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def create_data(i):
tfrecords_filename = '_temp/dstest/tt%d.tfr' % i
writer = tf.python_io.TFRecordWriter(tfrecords_filename)
for j in range(1000):
f = tf.train.Features(feature={
'x': _int64_feature([j]),
"y": _int64_feature(np.random.randint(5, 100, size=np.random.randint(6)))
})
example = tf.train.Example(features=f)
writer.write(example.SerializeToString())
writer.close()
return tfrecords_filename
def _parse_function(example_proto):
features = {
"x": tf.FixedLenFeature((), tf.int64),
"y": tf.FixedLenSequenceFeature((), tf.int64, allow_missing=True)
}
parsed_features = tf.parse_example(example_proto, features)
return parsed_features
os.makedirs("_temp/dstest", exist_ok=True)
sess = tf.InteractiveSession()
filenames = [create_data(i) for i in range(5)]
#### DATASET
dataset = tf.data.TFRecordDataset(filenames).repeat()
dataset = dataset.batch(100)
dataset = dataset.map(_parse_function)
dataset = dataset.prefetch(1000)
d = dataset.make_one_shot_iterator()
%timeit -n 200 sess.run(d.get_next())
#### QUEUE
filename_queue = tf.train.string_input_producer(filenames, capacity=1)
reader = tf.TFRecordReader()
_, serialized_example = reader.read_up_to(filename_queue, 100)
features = _parse_function(serialized_example)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
tf.train.start_queue_runners()
%timeit -n 200 sess.run(features)
coord.request_stop()
coord.join(threads)
Run Code Online (Sandbox Code Playgroud)
哦,我想通了。我不应该d.get_next()
多次打电话。
当我将其更改为:
d = dataset.make_one_shot_iterator().get_next()
%timeit -n 200 sess.run(d)
Run Code Online (Sandbox Code Playgroud)
那么速度和队列版差不多,甚至没有预取。
并且需要调用的结果sess.run
总是不同的。
归档时间: |
|
查看次数: |
1810 次 |
最近记录: |