ubu*_*oob 5 python dataframe pandas
data1 = { 'node1': [2,2,3,6],
'node2': [6,7,7,28],
'weight': [1,2,1,1], }
df1 = pd.DataFrame(data1, columns = ['node1','node2','weight'])
Run Code Online (Sandbox Code Playgroud)
我想按递增顺序重命名data1中的node1和node2.节点是2 3 6 7 28,因此它们分别变为1 2 3 4 5.
所以数据框变成了 -
data1 = { 'node1': [1,1,2,3],
'node2': [3,4,4,5],
'weight': [1,2,1,1], }
df1 = pd.DataFrame(data1, columns = ['node1','node2','weight'])
Run Code Online (Sandbox Code Playgroud)
之前的数据看起来像这样
但现在看起来像这样
通过整形分配和分配,即分解
df1[['node1','node2']] = (pd.factorize(np.sort(df1[['node1','node2']].values.reshape(-1)))[0]+1).reshape(-1,len(df1)).T
node1 node2 weight
0 1 3 1
1 1 4 2
2 2 4 1
3 3 5 1
Run Code Online (Sandbox Code Playgroud)
使用dict进行融合和分解以及重命名的另一种方法
vals = pd.factorize(df1[['node1','node2']].melt().sort_values('value')['value'])
to_rename = dict(zip(vals[1],np.unique(vals[0]+1)))
# {2: 1, 3: 2, 6: 3, 7: 4, 28: 5}
df1[['node1','node2']] = df1[['node1','node2']].apply(lambda x : x.map(to_rename))
# Also df1[['node1','node2']] = df1[['node1','node2']].replace(to_rename) Thanks @jezrael
node1 node2 weight
0 1 3 1
1 1 4 2
2 2 4 1
3 3 5 1
Run Code Online (Sandbox Code Playgroud)
df2 = (df1.set_index('weight', append=True)
.stack()
.rank(method='dense')
.astype(int)
.unstack()
.reset_index(level=1))
print (df2)
weight node1 node2
0 1 1 3
1 2 1 4
2 1 2 4
3 1 3 5
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
245 次 |
最近记录: |