BKS*_*BKS 8 python combinations python-2.7 pandas
我有一个pandas数据帧df:
ID words
1 word1
1 word2
1 word3
2 word4
2 word5
3 word6
3 word7
3 word8
3 word9
Run Code Online (Sandbox Code Playgroud)
我想生成另一个数据帧,它将生成每个组中的所有单词对.所以上面的结果将是:
ID wordA wordB
1 word1 word2
1 word1 word3
1 word2 word3
2 word4 word5
3 word6 word7
3 word6 word8
3 word6 word9
3 word7 word8
3 word7 word9
3 word8 word9
Run Code Online (Sandbox Code Playgroud)
我知道我可以用来df.groupby['words']获取每个内容ID.
我也知道我可以用
iterable = ['word1','word2','word3']
list(itertools.combinations(iterable, 2))
Run Code Online (Sandbox Code Playgroud)
获得所有可能的成对组合.但是,如上所示,我对生成结果数据帧的最佳方法有点迷失.
您可以将groupbywith apply与return 一起使用DataFrame,最后一次添加reset_index用于删除第二级,然后从索引创建列:
from itertools import combinations
f = lambda x : pd.DataFrame(list(combinations(x.values,2)),
columns=['wordA','wordB'])
df = (df.groupby('ID')['words'].apply(f)
.reset_index(level=1, drop=True)
.reset_index())
print (df)
ID wordA wordB
0 1 word1 word2
1 1 word1 word3
2 1 word2 word3
3 2 word4 word5
4 3 word6 word7
5 3 word6 word8
6 3 word6 word9
7 3 word7 word8
8 3 word7 word9
9 3 word8 word9
Run Code Online (Sandbox Code Playgroud)
它易于应用的itertools组合在apply和stack中使用,即
from itertools import combinations
ndf = df.groupby('ID')['words'].apply(lambda x : list(combinations(x.values,2)))
.apply(pd.Series).stack().reset_index(level=0,name='words')
ID words
0 1 (word1, word2)
1 1 (word1, word3)
2 1 (word2, word3)
0 2 (word4, word5)
0 3 (word6, word7)
1 3 (word6, word8)
2 3 (word6, word9)
3 3 (word7, word8)
4 3 (word7, word9)
5 3 (word8, word9)
Run Code Online (Sandbox Code Playgroud)
为了进一步匹配您的确切输出,我们必须做
sdf = pd.concat([ndf['ID'],ndf['words'].apply(pd.Series)],1).set_axis(['ID','WordsA','WordsB'],1,inplace=False)
ID WordsA WordsB
0 1 word1 word2
1 1 word1 word3
2 1 word2 word3
0 2 word4 word5
0 3 word6 word7
1 3 word6 word8
2 3 word6 word9
3 3 word7 word8
4 3 word7 word9
5 3 word8 word9
Run Code Online (Sandbox Code Playgroud)
要将其转换为一行,我们可以执行以下操作:
combo = df.groupby('ID')['words'].apply(combinations,2)\
.apply(list).apply(pd.Series)\
.stack().apply(pd.Series)\
.set_axis(['WordsA','WordsB'],1,inplace=False)\
.reset_index(level=0)
Run Code Online (Sandbox Code Playgroud)