kal*_*own 7 python csv pandas pandas-groupby
想要将数据帧输出Pandas group到CSV.尝试了各种StackOverflow解决方案,但它们没有奏效.
Python 3.6.1,Pandas 0.20.1
groupby结果如下:
id month year count
week
0 9066 82 32142 895
1 7679 84 30112 749
2 8368 126 42187 872
3 11038 102 34165 976
4 8815 117 34122 767
5 10979 163 50225 1252
6 8726 142 38159 996
7 5568 63 26143 582
Run Code Online (Sandbox Code Playgroud)
想要一个看起来像的csv
week count
0 895
1 749
2 872
3 976
4 767
5 1252
6 996
7 582
Run Code Online (Sandbox Code Playgroud)
当前代码:
week_grouped = df.groupby('week')
week_grouped.sum() #At this point you have the groupby result
week_grouped.to_csv('week_grouped.csv') #Can't do this - .to_csv is not a df function.
Run Code Online (Sandbox Code Playgroud)
阅读SO解决方案:
week_grouped.drop_duplicates().to_csv('week_grouped.csv')
Run Code Online (Sandbox Code Playgroud)
结果: AttributeError:无法访问'DataFrameGroupBy'对象的可调用属性'drop_duplicates',请尝试使用'apply'方法
Python pandas - 将groupby输出写入文件
week_grouped.reset_index().to_csv('week_grouped.csv')
Run Code Online (Sandbox Code Playgroud)
结果: AttributeError:"无法访问'DataFrameGroupBy'对象的可调用属性'reset_index',请尝试使用'apply'方法"
Group By 返回键、值对,其中键是组的标识符,值是组本身,即与键匹配的原始 df 的子集。
在您的示例中week_grouped = df.groupby('week')是一组组(pandas.core.groupby.DataFrameGroupBy 对象),您可以按如下方式详细探索:
for k, gr in week_grouped:
# do your stuff instead of print
print(k)
print(type(gr)) # This will output <class 'pandas.core.frame.DataFrame'>
print(gr)
# You can save each 'gr' in a csv as follows
gr.to_csv('{}.csv'.format(k))
Run Code Online (Sandbox Code Playgroud)
或者,您可以计算分组对象上的聚合函数
result = week_grouped.sum()
# This will be already one row per key and its aggregation result
result.to_csv('result.csv')
Run Code Online (Sandbox Code Playgroud)
在您的示例中,您需要将函数结果分配给某个变量,因为默认情况下 pandas 对象是不可变的。
some_variable = week_grouped.sum()
some_variable.to_csv('week_grouped.csv') # This will work
Run Code Online (Sandbox Code Playgroud)
基本上 result.csv 和 week_grouped.csv 是相同的
试着这样做:
week_grouped = df.groupby('week')
week_grouped.sum().reset_index().to_csv('week_grouped.csv')
Run Code Online (Sandbox Code Playgroud)
那会将整个数据帧写入文件.如果你只想要那两列,
week_grouped = df.groupby('week')
week_grouped.sum().reset_index()[['week', 'count']].to_csv('week_grouped.csv')
Run Code Online (Sandbox Code Playgroud)
这是原始代码的逐行说明:
# This creates a "groupby" object (not a dataframe object)
# and you store it in the week_grouped variable.
week_grouped = df.groupby('week')
# This instructs pandas to sum up all the numeric type columns in each
# group. This returns a dataframe where each row is the sum of the
# group's numeric columns. You're not storing this dataframe in your
# example.
week_grouped.sum()
# Here you're calling the to_csv method on a groupby object... but
# that object type doesn't have that method. Dataframes have that method.
# So we should store the previous line's result (a dataframe) into a variable
# and then call its to_csv method.
week_grouped.to_csv('week_grouped.csv')
# Like this:
summed_weeks = week_grouped.sum()
summed_weeks.to_csv('...')
# Or with less typing simply
week_grouped.sum().to_csv('...')
Run Code Online (Sandbox Code Playgroud)
尝试将第二行更改为week_grouped = week_grouped.sum()并重新运行所有三行。
week_grouped.sum()如果您在其自己的 Jupyter 笔记本单元中运行,您将看到该语句如何将输出返回到单元的输出,而不是将结果分配回week_grouped。一些 pandas 方法有一个inplace=True参数(例如df.sort_values(by=col_name, inplace=True)),但sum没有。
编辑:每周数字在您的 CSV 中只出现一次吗?如果是这样,这是一个不使用的更简单的解决方案groupby:
df = pd.read_csv('input.csv')
df[['id', 'count']].to_csv('output.csv')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
16586 次 |
| 最近记录: |