因子的逻辑回归:eval(family$initialize) 中的错误:y 值必须为 0 <= y <= 1

Akh*_*udi 6 r logistic-regression r-factor

无法修复以下逻辑回归的以下错误

training=(IBM$Serial<625)
data=IBM[!training,]
dim(data)
stock.direction <- data$Direction
training_model=glm(stock.direction~data$lag2,data=data,family=binomial)
###Error### ----  Error in eval(family$initialize) : y values must be 0 <= y <= 1
Run Code Online (Sandbox Code Playgroud)

我正在使用的数据中的几行

X   Date    Open    High    Low Close   Adj.Close   Volume  Return  lag1    lag2    lag3    Direction   Serial
1   28-11-2012  190.979996  192.039993  189.270004  191.979996  165.107727  3603600 0.004010855 0.004010855 -0.001198021    -0.006354834    Up  1
2   29-11-2012  192.75  192.899994  190.199997  191.529999  164.720734  4077900 0.00114865  0.00114865  -0.004020279    -0.009502386    Up  2
3   30-11-2012  191.75  192 189.5   190.070007  163.465073  4936400 0.003630178 0.003630178 -0.001894039    -0.005576956    Up  3
4   03-12-2012  190.759995  191.300003  188.360001  189.479996  162.957703  3349600 0.001213907 0.001213907 -0.002480478    -0.001636046    Up  4
Run Code Online (Sandbox Code Playgroud)

Nid*_*arg 11

它要求 y 值介于 0 和 1 之间的原因是因为数据中的分类特征(例如“方向”)属于“字符”类型。您需要将它们转换为带有as.factor(data$Direction). 所以:glm(Direction ~ lag2, data=...)不需要声明stock.direction。

您可以使用命令检查变量的类别class(variable),如果它们是字符,则可以转换为因子并在同一数据框中创建一个新列。它应该工作。


Mat*_*981 0

在不了解数据的情况下,你应该这样做

library(dplyr)
df <- read.table(header = T, stringsAsFactors = F,  text ="X   Date    Open    High    Low Close   Adj.Close   Volume  Return  lag1    lag2    lag3    Direction   Serial
1   28-11-2012  190.979996  192.039993  189.270004  191.979996  165.107727  3603600 0.004010855 0.004010855 -0.001198021    -0.006354834    Up  1
2   29-11-2012  192.75  192.899994  190.199997  191.529999  164.720734  4077900 0.00114865  0.00114865  -0.004020279    -0.009502386    Up  2
3   30-11-2012  191.75  192 189.5   190.070007  163.465073  4936400 0.003630178 0.003630178 -0.001894039    -0.005576956    Up  3
4   03-12-2012  190.759995  191.300003  188.360001  189.479996  162.957703  3349600 0.001213907 0.001213907 -0.002480478    -0.001636046    Up  4
1   28-11-2012  190.979996  192.039993  189.270004  191.979996  165.107727  3603600 0.004010855 0.004010855 -0.001198021    -0.006354834    Up  1
2   29-11-2012  192.75  192.899994  190.199997  191.529999  164.720734  4077900 0.00114865  0.00114865  -0.004020279    -0.009502386    Down  2
3   30-11-2012  191.75  192 189.5   190.070007  163.465073  4936400 0.003630178 0.003630178 -0.001894039    -0.005576956    Up  3
4   03-12-2012  190.759995  191.300003  188.360001  189.479996  162.957703  3349600 0.001213907 0.001213907 -0.002480478    -0.001636046    Down  4
") %>%
  mutate(bin = ifelse(Direction == "Up", 1, 0))

glm(bin ~ High, family = "binomial", data = df)
Run Code Online (Sandbox Code Playgroud)