Daw*_*zuk 2 python nlp stop-words lemmatization spacy
如何在词干和词形还原后检测单词是否为禁用词spaCy
?
假设有句
s = "something good\nsomethings 2 bad"
Run Code Online (Sandbox Code Playgroud)
在这种情况下something
是一个禁用词.显然(对我来说?)Something
并且somethings
也是停顿词,但它需要在此之前完成.下面的脚本会说第一个是真的,但后者不是.
import spacy
from spacy.tokenizer import Tokenizer
nlp = spacy.load('en')
tokenizer = Tokenizer(nlp.vocab)
s = "something good\nSomething 2 somethings"
tokens = tokenizer(s)
for token in tokens:
print(token.lemma_, token.is_stop)
Run Code Online (Sandbox Code Playgroud)
返回:
something True
good False
"\n" False
Something False
2 False
somethings False
Run Code Online (Sandbox Code Playgroud)
有没有办法通过spaCy
API 检测到它?
在spaCy中停用单词只是一组字符串,它们在词汇表中设置了一个标志,这是词汇表中与上下文无关的条目(请参阅此处的英语停止列表).该标志只是检查text in STOP_WORDS
,这是"某事"返回True
的原因is_stop
,而"某事"则不然.
但是,您可以做的是检查令牌的引理或小写形式是否是停止列表的一部分,该列表可通过nlp.Defaults.stop_words
(即您正在使用的语言的默认值)获得:
def extended_is_stop(token):
stop_words = nlp.Defaults.stop_words
return token.is_stop or token.lower_ in stop_words or token.lemma_ in stop_words
Run Code Online (Sandbox Code Playgroud)
如果您正在使用spaCy v2.0并希望更优雅地解决这个问题,您还可以is_stop
通过自定义Token
属性扩展来实现自己的功能.您可以为您的属性选择任何名称token._.
,例如token._.is_stop
:
from spacy.tokens import Token
from spacy.lang.en.stop_words import STOP_WORDS # import stop words from language data
stop_words_getter = lambda token: token.is_stop or token.lower_ in STOP_WORDS or token.lemma_ in STOP_WORDS
Token.set_extension('is_stop', getter=stop_words_getter) # set attribute with getter
nlp = spacy.load('en')
doc = nlp("something Something somethings")
assert doc[0]._.is_stop # this was a stop word before, and still is
assert doc[1]._.is_stop # this is now also a stop word, because its lowercase form is
assert doc[2]._.is_stop # this is now also a stop word, because its lemma is
Run Code Online (Sandbox Code Playgroud)