ull*_*lix 11 python video opencv ffmpeg pyqt5
[更新:] 是的,这是可能的,现在大约 20 个月后。请参阅下面的 Update3![/更新]
这真的不可能吗?我所能找到的只是调用 FFmpeg(或其他软件)的变体。我当前的解决方案如下所示,但为了可移植性,我真正想要的是一个纯 Python 的解决方案,它不需要用户安装额外的软件。
毕竟,我可以使用 PyQt 的 Phonon 轻松播放视频,但我不能简单地获取视频的尺寸或持续时间之类的信息?
我的解决方案使用 ffmpy ( http://ffmpy.readthedocs.io/en/latest/ffmpy.html ),它是 FFmpeg 和 FFprobe ( http://trac.ffmpeg.org/wiki/FFprobeTips )的包装器。比其他产品更流畅,但它仍然需要额外的 FFmpeg 安装。
import ffmpy, subprocess, json
ffprobe = ffmpy.FFprobe(global_options="-loglevel quiet -sexagesimal -of json -show_entries stream=width,height,duration -show_entries format=duration -select_streams v:0", inputs={"myvideo.mp4": None})
print("ffprobe.cmd:", ffprobe.cmd) # printout the resulting ffprobe shell command
stdout, stderr = ffprobe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
# std* is byte sequence, but json in Python 3.5.2 requires str
ff0string = str(stdout,'utf-8')
ffinfo = json.loads(ff0string)
print(json.dumps(ffinfo, indent=4)) # pretty print
print("Video Dimensions: {}x{}".format(ffinfo["streams"][0]["width"], ffinfo["streams"][0]["height"]))
print("Streams Duration:", ffinfo["streams"][0]["duration"])
print("Format Duration: ", ffinfo["format"]["duration"])
Run Code Online (Sandbox Code Playgroud)
结果输出:
ffprobe.cmd: ffprobe -loglevel quiet -sexagesimal -of json -show_entries stream=width,height,duration -show_entries format=duration -select_streams v:0 -i myvideo.mp4
{
"streams": [
{
"duration": "0:00:32.033333",
"width": 1920,
"height": 1080
}
],
"programs": [],
"format": {
"duration": "0:00:32.064000"
}
}
Video Dimensions: 1920x1080
Streams Duration: 0:00:32.033333
Format Duration: 0:00:32.064000
Run Code Online (Sandbox Code Playgroud)
经过几天的试验后更新:下面由 Nick 提出的 hachoire 解决方案确实有效,但会给您带来很多麻烦,因为 hachoire 响应太不可预测了。不是我的选择。
使用 opencv 编码再简单不过了:
import cv2
vid = cv2.VideoCapture( picfilename)
height = vid.get(cv2.CAP_PROP_FRAME_HEIGHT) # always 0 in Linux python3
width = vid.get(cv2.CAP_PROP_FRAME_WIDTH) # always 0 in Linux python3
print ("opencv: height:{} width:{}".format( height, width))
Run Code Online (Sandbox Code Playgroud)
问题是它在 Python2 上运行良好,但在 Py3 上运行良好。引用:“重要说明:MacOS 和 Linux 软件包不支持视频相关功能(未使用 FFmpeg 编译)”(https://pypi.python.org/pypi/opencv-python)。
最重要的是,opencv 似乎需要在运行时存在 FFmeg 的二进制包(https://docs.opencv.org/3.3.1/d0/da7/videoio_overview.html)。
好吧,如果我无论如何都需要安装 FFmpeg,我可以坚持使用上面显示的原始 ffmpy 示例:-/
谢谢您的帮助。
UPDATE2: master_q(见下文)提议的 MediaInfo。虽然这在我的 Linux 系统上不起作用(请参阅我的评论),但使用 pymediainfo(MediaInfo 的 py 包装器)的替代方法确实有效。使用起来很简单,但是比我最初的ffprobe方式获取时长、宽度和高度需要4倍的时间,而且还需要外部软件,即MediaInfo:
from pymediainfo import MediaInfo
media_info = MediaInfo.parse("myvideofile")
for track in media_info.tracks:
if track.track_type == 'Video':
print("duration (millisec):", track.duration)
print("width, height:", track.width, track.height)
Run Code Online (Sandbox Code Playgroud)
更新 3: OpenCV 终于可用于 Python3,并声称可以在 Linux、Win 和 Mac 上运行!它使它变得非常简单,并且我证实不需要外部软件 - 特别是 ffmpeg - !
首先通过 Pip 安装 OpenCV:
pip install opencv-python
Run Code Online (Sandbox Code Playgroud)
在 Python 中运行:
import cv2
cv2video = cv2.VideoCapture( videofilename)
height = cv2video.get(cv2.CAP_PROP_FRAME_HEIGHT)
width = cv2video.get(cv2.CAP_PROP_FRAME_WIDTH)
print ("Video Dimension: height:{} width:{}".format( height, width))
framecount = cv2video.get(cv2.CAP_PROP_FRAME_COUNT )
frames_per_sec = cv2video.get(cv2.CAP_PROP_FPS)
print("Video duration (sec):", framecount / frames_per_sec)
# equally easy to get this info from images
cv2image = cv2.imread(imagefilename, flags=cv2.IMREAD_COLOR )
height, width, channel = cv2image.shape
print ("Image Dimension: height:{} width:{}".format( height, width))
Run Code Online (Sandbox Code Playgroud)
我还需要视频的第一帧作为图像,并为此使用 ffmpeg 将图像保存在文件系统中。使用 OpenCV 也更容易:
hasFrames, cv2image = cv2video.read() # reads 1st frame
cv2.imwrite("myfilename.png", cv2image) # extension defines image type
Run Code Online (Sandbox Code Playgroud)
但更好的是,因为我只需要在内存中使用 PyQt5 工具包中的图像,我可以直接将 cv2-image 读入 Qt-image:
bytesPerLine = 3 * width
# my_qt_image = QImage(cv2image, width, height, bytesPerLine, QImage.Format_RGB888) # may give false colors!
my_qt_image = QImage(cv2image.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped() # correct colors on my systems
Run Code Online (Sandbox Code Playgroud)
由于 OpenCV 是一个庞大的程序,我担心时间。事实证明,OpenCV 从来没有落后于替代品。我需要大约 100 毫秒来阅读一张幻灯片,其余所有时间加起来不会超过 10 毫秒。
我在 Ubuntu Mate 16.04、18.04 和 19.04 以及两个不同的 Windows 10 Pro 安装上成功地测试了这个。(没有 Mac 可用)。我对 OpenCV 感到非常高兴!
您可以在我的 SlideSorter 程序中看到它的运行情况,该程序允许对图像和视频进行排序、保留排序顺序并以幻灯片形式呈现。可在此处获得:https : //sourceforge.net/projects/slidesorter/
好吧,在我自己调查之后,因为我也需要它,看起来可以用 来完成hachoir。这是一个代码片段,可以为您提供 hachoir 可以读取的所有元数据:
import re
from hachoir.parser import createParser
from hachoir.metadata import extractMetadata
def get_video_metadata(path):
"""
Given a path, returns a dictionary of the video's metadata, as parsed by hachoir.
Keys vary by exact filetype, but for an MP4 file on my machine,
I get the following keys (inside of "Common" subdict):
"Duration", "Image width", "Image height", "Creation date",
"Last modification", "MIME type", "Endianness"
Dict is nested - common keys are inside of a subdict "Common",
which will always exist, but some keys *may* be inside of
video/audio specific stream subdicts, named "Video Stream #1"
or "Audio Stream #1", etc. Not all formats result in this
separation.
:param path: str path to video file
:return: dict of video metadata
"""
if not os.path.exists(path):
raise ValueError("Provided path to video ({}) does not exist".format(path))
parser = createParser(path)
if not parser:
raise RuntimeError("Unable to get metadata from video file")
with parser:
metadata = extractMetadata(parser)
if not metadata:
raise RuntimeError("Unable to get metadata from video file")
metadata_dict = {}
line_matcher = re.compile("-\s(?P<key>.+):\s(?P<value>.+)")
group_key = None # group_key stores which group we're currently in for nesting subkeys
for line in metadata.exportPlaintext(): # this is what hachoir offers for dumping readable information
parts = line_matcher.match(line) #
if not parts: # not all lines have metadata - at least one is a header
if line == "Metadata:": # if it's the generic header, set it to "Common: to match items with multiple streams, so there's always a Common key
group_key = "Common"
else:
group_key = line[:-1] # strip off the trailing colon of the group header and set it to be the current group we add other keys into
metadata_dict[group_key] = {} # initialize the group
continue
if group_key: # if we're inside of a group, then nest this key inside it
metadata_dict[group_key][parts.group("key")] = parts.group("value")
else: # otherwise, put it in the root of the dict
metadata_dict[parts.group("key")] = parts.group("value")
return metadata_dict
Run Code Online (Sandbox Code Playgroud)
这似乎现在为我带来了良好的结果,并且不需要额外的安装。这些按键似乎因视频和视频类型而异,因此您需要进行一些检查,而不仅仅是假设存在任何特定的按键。该代码是为 Python 3 编写的,使用hachoir3并改编自hachoir3 文档- 我还没有调查它是否适用于 Python 2 的 hachoir。
如果它有用,我还可以将基于文本的持续时间值转换为秒:
def length(duration_value):
time_split = re.match("(?P<hours>\d+\shrs)?\s*(?P<minutes>\d+\smin)?\s*(?P<seconds>\d+\ssec)?\s*(?P<ms>\d+\sms)", duration_value) # get the individual time components
fields_and_multipliers = { # multipliers to convert each value to seconds
"hours": 3600,
"minutes": 60,
"seconds": 1,
"ms": 1
}
total_time = 0
for group in fields_and_multipliers: # iterate through each portion of time, multiply until it's in seconds and add to total
if time_split.group(group) is not None: # not all groups will be defined for all videos (eg: "hrs" may be missing)
total_time += float(time_split.group(group).split(" ")[0]) * fields_and_multipliers[group] # get the number from the match and multiply it to make seconds
return total_time
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11369 次 |
| 最近记录: |