使用 Python 获取视频属性,无需调用外部软件

ull*_*lix 11 python video opencv ffmpeg pyqt5

[更新:] 是的,这是可能的,现在大约 20 个月后。请参阅下面的 Update3![/更新]

这真的不可能吗?我所能找到的只是调用 FFmpeg(或其他软件)的变体。我当前的解决方案如下所示,但为了可移植性,我真正想要的是一个纯 Python 的解决方案,它不需要用户安装额外的软件。

毕竟,我可以使用 PyQt 的 Phonon 轻松播放视频,但我不能简单地获取视频的尺寸或持续时间之类的信息?

我的解决方案使用 ffmpy ( http://ffmpy.readthedocs.io/en/latest/ffmpy.html ),它是 FFmpeg 和 FFprobe ( http://trac.ffmpeg.org/wiki/FFprobeTips )的包装器。比其他产品更流畅,但它仍然需要额外的 FFmpeg 安装。

    import ffmpy, subprocess, json
    ffprobe = ffmpy.FFprobe(global_options="-loglevel quiet -sexagesimal -of json -show_entries stream=width,height,duration -show_entries format=duration -select_streams v:0", inputs={"myvideo.mp4": None})
    print("ffprobe.cmd:", ffprobe.cmd)  # printout the resulting ffprobe shell command
    stdout, stderr = ffprobe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
    # std* is byte sequence, but json in Python 3.5.2 requires str
    ff0string = str(stdout,'utf-8')

    ffinfo = json.loads(ff0string)
    print(json.dumps(ffinfo, indent=4)) # pretty print

    print("Video Dimensions: {}x{}".format(ffinfo["streams"][0]["width"], ffinfo["streams"][0]["height"]))
    print("Streams Duration:", ffinfo["streams"][0]["duration"])
    print("Format Duration: ", ffinfo["format"]["duration"])
Run Code Online (Sandbox Code Playgroud)

结果输出:

    ffprobe.cmd: ffprobe -loglevel quiet -sexagesimal -of json -show_entries stream=width,height,duration -show_entries format=duration -select_streams v:0 -i myvideo.mp4
    {
        "streams": [
            {
                "duration": "0:00:32.033333",
                "width": 1920,
                "height": 1080
            }
        ],
        "programs": [],
        "format": {
            "duration": "0:00:32.064000"
        }
    }
    Video Dimensions: 1920x1080
    Streams Duration: 0:00:32.033333
    Format Duration:  0:00:32.064000
Run Code Online (Sandbox Code Playgroud)

经过几天的试验后更新:下面由 Nick 提出的 hach​​oire 解决方案确实有效,但会给您带来很多麻烦,因为 hach​​oire 响应太不可预测了。不是我的选择。

使用 opencv 编码再简单不过了:

import cv2
vid = cv2.VideoCapture( picfilename)
height = vid.get(cv2.CAP_PROP_FRAME_HEIGHT) # always 0 in Linux python3
width  = vid.get(cv2.CAP_PROP_FRAME_WIDTH)  # always 0 in Linux python3
print ("opencv: height:{} width:{}".format( height, width))
Run Code Online (Sandbox Code Playgroud)

问题是它在 Python2 上运行良好,但在 Py3 上运行良好。引用:“重要说明:MacOS 和 Linux 软件包不支持视频相关功能(未使用 FFmpeg 编译)”https://pypi.python.org/pypi/opencv-python)。

最重要的是,opencv 似乎需要在运行时存在 FFmeg 的二进制包(https://docs.opencv.org/3.3.1/d0/da7/videoio_overview.html)。

好吧,如果我无论如何都需要安装 FFmpeg,我可以坚持使用上面显示的原始 ffmpy 示例:-/

谢谢您的帮助。

UPDATE2: master_q(见下文)提议的 MediaInfo。虽然这在我的 Linux 系统上不起作用(请参阅我的评论),但使用 pymediainfo(MediaInfo 的 py 包装器)的替代方法确实有效。使用起来很简单,但是比我最初的ffprobe方式获取时长、宽度和高度需要4倍的时间,而且还需要外部软件,即MediaInfo:

from pymediainfo import MediaInfo
media_info = MediaInfo.parse("myvideofile")
for track in media_info.tracks:
    if track.track_type == 'Video':
        print("duration (millisec):", track.duration)
        print("width, height:", track.width, track.height)
Run Code Online (Sandbox Code Playgroud)

更新 3: OpenCV 终于可用于 Python3,并声称可以在 Linux、Win 和 Mac 上运行!它使它变得非常简单,并且我证实不需要外部软件 - 特别是 ffmpeg - !

首先通过 Pip 安装 OpenCV:

pip install opencv-python
Run Code Online (Sandbox Code Playgroud)

在 Python 中运行:

import cv2
cv2video = cv2.VideoCapture( videofilename)
height = cv2video.get(cv2.CAP_PROP_FRAME_HEIGHT)
width  = cv2video.get(cv2.CAP_PROP_FRAME_WIDTH) 
print ("Video Dimension: height:{} width:{}".format( height, width))

framecount = cv2video.get(cv2.CAP_PROP_FRAME_COUNT ) 
frames_per_sec = cv2video.get(cv2.CAP_PROP_FPS)
print("Video duration (sec):", framecount / frames_per_sec)

# equally easy to get this info from images
cv2image = cv2.imread(imagefilename, flags=cv2.IMREAD_COLOR  )
height, width, channel  = cv2image.shape
print ("Image Dimension: height:{} width:{}".format( height, width))
Run Code Online (Sandbox Code Playgroud)

我还需要视频的第一帧作为图像,并为此使用 ffmpeg 将图像保存在文件系统中。使用 OpenCV 也更容易:

hasFrames, cv2image = cv2video.read()   # reads 1st frame
cv2.imwrite("myfilename.png", cv2image) # extension defines image type
Run Code Online (Sandbox Code Playgroud)

但更好的是,因为我只需要在内存中使用 PyQt5 工具包中的图像,我可以直接将 cv2-image 读入 Qt-image:

bytesPerLine = 3 * width
# my_qt_image = QImage(cv2image, width, height, bytesPerLine, QImage.Format_RGB888) # may give false colors!
my_qt_image = QImage(cv2image.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped() # correct colors on my systems
Run Code Online (Sandbox Code Playgroud)

由于 OpenCV 是一个庞大的程序,我担心时间。事实证明,OpenCV 从来没有落后于替代品。我需要大约 100 毫秒来阅读一张幻灯片,其余所有时间加起来不会超过 10 毫秒。

我在 Ubuntu Mate 16.04、18.04 和 19.04 以及两个不同的 Windows 10 Pro 安装上成功地测试了这个。(没有 Mac 可用)。我对 OpenCV 感到非常高兴!

您可以在我的 SlideSorter 程序中看到它的运行情况,该程序允许对图像和视频进行排序、保留排序顺序并以幻灯片形式呈现。可在此处获得:https : //sourceforge.net/projects/slidesorter/

Nic*_*ick 4

好吧,在我自己调查之后,因为我也需要它,看起来可以用 来完成hachoir。这是一个代码片段,可以为您提供 hach​​oir 可以读取的所有元数据:

import re
from hachoir.parser import createParser
from hachoir.metadata import extractMetadata

def get_video_metadata(path):
    """
        Given a path, returns a dictionary of the video's metadata, as parsed by hachoir.
        Keys vary by exact filetype, but for an MP4 file on my machine,
        I get the following keys (inside of "Common" subdict):
            "Duration", "Image width", "Image height", "Creation date",
            "Last modification", "MIME type", "Endianness"

        Dict is nested - common keys are inside of a subdict "Common",
        which will always exist, but some keys *may* be inside of
        video/audio specific stream subdicts, named "Video Stream #1"
        or "Audio Stream #1", etc. Not all formats result in this
        separation.

        :param path: str path to video file
        :return: dict of video metadata
    """

    if not os.path.exists(path):
        raise ValueError("Provided path to video ({}) does not exist".format(path))

    parser = createParser(path)
    if not parser:
        raise RuntimeError("Unable to get metadata from video file")

    with parser:
        metadata = extractMetadata(parser)

        if not metadata:
            raise RuntimeError("Unable to get metadata from video file")

    metadata_dict = {}
    line_matcher = re.compile("-\s(?P<key>.+):\s(?P<value>.+)")
    group_key = None  # group_key stores which group we're currently in for nesting subkeys
    for line in metadata.exportPlaintext():  # this is what hachoir offers for dumping readable information
        parts = line_matcher.match(line)  #
        if not parts:  # not all lines have metadata - at least one is a header
            if line == "Metadata:":  # if it's the generic header, set it to "Common: to match items with multiple streams, so there's always a Common key
                group_key = "Common"
            else:
                group_key = line[:-1]  # strip off the trailing colon of the group header and set it to be the current group we add other keys into
            metadata_dict[group_key] = {}  # initialize the group
            continue

        if group_key:  # if we're inside of a group, then nest this key inside it
            metadata_dict[group_key][parts.group("key")] = parts.group("value")
        else:  # otherwise, put it in the root of the dict
            metadata_dict[parts.group("key")] = parts.group("value")

    return metadata_dict
Run Code Online (Sandbox Code Playgroud)

这似乎现在为我带来了良好的结果,并且不需要额外的安装。这些按键似乎因视频和视频类型而异,因此您需要进行一些检查,而不仅仅是假设存在任何特定的按键。该代码是为 Python 3 编写的,使用hach​​oir3并改编自hach​​oir3 文档- 我还没有调查它是否适用于 Python 2 的 hach​​oir。

如果它有用,我还可以将基于文本的持续时间值转换为秒:

def length(duration_value):

    time_split = re.match("(?P<hours>\d+\shrs)?\s*(?P<minutes>\d+\smin)?\s*(?P<seconds>\d+\ssec)?\s*(?P<ms>\d+\sms)", duration_value)  # get the individual time components

    fields_and_multipliers = {  # multipliers to convert each value to seconds
        "hours": 3600,
        "minutes": 60,
        "seconds": 1,
        "ms": 1
    }

    total_time = 0
    for group in fields_and_multipliers:  # iterate through each portion of time, multiply until it's in seconds and add to total
        if time_split.group(group) is not None:  # not all groups will be defined for all videos (eg: "hrs" may be missing)
            total_time += float(time_split.group(group).split(" ")[0]) * fields_and_multipliers[group]  # get the number from the match and multiply it to make seconds


    return total_time
Run Code Online (Sandbox Code Playgroud)