Pyspark:具有重置条件的累积总和

swa*_*nil 7 cumulative-sum apache-spark apache-spark-sql pyspark

我们有如下数据框:

+------+--------------------+
| Flag |               value|
+------+--------------------+
|1     |5                   |
|1     |4                   |
|1     |3                   |
|1     |5                   |
|1     |6                   |
|1     |4                   |
|1     |7                   |
|1     |5                   |
|1     |2                   |
|1     |3                   |
|1     |2                   |
|1     |6                   |
|1     |9                   |      
+------+--------------------+
Run Code Online (Sandbox Code Playgroud)

在正常 cumsum 之后,我们得到了这个。

+------+--------------------+----------+
| Flag |               value|cumsum    |
+------+--------------------+----------+
|1     |5                   |5         |
|1     |4                   |9         |
|1     |3                   |12        |
|1     |5                   |17        |
|1     |6                   |23        |
|1     |4                   |27        |
|1     |7                   |34        |
|1     |5                   |39        |
|1     |2                   |41        |
|1     |3                   |44        |
|1     |2                   |46        |
|1     |6                   |52        |
|1     |9                   |61        |       
+------+--------------------+----------+
Run Code Online (Sandbox Code Playgroud)

现在我们想要的是在为 ex 设置特定条件时重置 cumsum。当它超过 20 时。

以下是预期输出:

+------+--------------------+----------+---------+
| Flag |               value|cumsum    |expected |
+------+--------------------+----------+---------+
|1     |5                   |5         |5        |
|1     |4                   |9         |9        |
|1     |3                   |12        |12       |
|1     |5                   |17        |17       |
|1     |6                   |23        |23       |
|1     |4                   |27        |4        |  <-----reset 
|1     |7                   |34        |11       |
|1     |5                   |39        |16       |
|1     |2                   |41        |18       |
|1     |3                   |44        |21       |
|1     |2                   |46        |2        |  <-----reset
|1     |6                   |52        |8        |
|1     |9                   |61        |17       |         
+------+--------------------+----------+---------+
Run Code Online (Sandbox Code Playgroud)

这就是我们计算累积总和的方式。

win_counter = Window.partitionBy("flag")

df_partitioned = df_partitioned.withColumn('cumsum',F.sum(F.col('value')).over(win_counter))
Run Code Online (Sandbox Code Playgroud)

niu*_*uer 1

最好还是在这里做pandas_udf

from pyspark.sql.functions import pandas_udf, PandasUDFType

pdf = pd.DataFrame({'flag':[1]*13,'id':range(13), 'value': [5,4,3,5,6,4,7,5,2,3,2,6,9]})
df = spark.createDataFrame(pdf)
df = df.withColumn('cumsum', F.lit(math.inf))

@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP)
def _calc_cumsum(pdf):
    pdf.sort_values(by=['id'], inplace=True, ascending=True)
    cumsums = []
    prev = None
    reset = False
    for v in pdf['value'].values:
        if prev is None:
            cumsums.append(v)
            prev = v
        else:
            prev = prev + v if not reset else v
            cumsums.append(prev)
            reset = True if prev >= 20 else False
            
    pdf['cumsum'] = cumsums
    return pdf

df = df.groupby('flag').apply(_calc_cumsum)
df.show()
Run Code Online (Sandbox Code Playgroud)

结果:

+----+---+-----+------+
|flag| id|value|cumsum|
+----+---+-----+------+
|   1|  0|    5|   5.0|
|   1|  1|    4|   9.0|
|   1|  2|    3|  12.0|
|   1|  3|    5|  17.0|
|   1|  4|    6|  23.0|
|   1|  5|    4|   4.0|
|   1|  6|    7|  11.0|
|   1|  7|    5|  16.0|
|   1|  8|    2|  18.0|
|   1|  9|    3|  21.0|
|   1| 10|    2|   2.0|
|   1| 11|    6|   8.0|
|   1| 12|    9|  17.0|
+----+---+-----+------+

Run Code Online (Sandbox Code Playgroud)